Higher-order Ising models on hypergraphs

Thomas Robiglio

IT:U Interdisciplinary Transformation University Austria DNDS, Central European University Inverse Complexity Lab

with Leonardo Di Gaetano, Ada Altieri, Giovanni Petri, and Federico Battiston

June 3, 2025

Why care about Ising models?

Originally: simplified model for ferromagnetisms

$$H=-h\sum_i s_i-J\sum_{\langle i,j\rangle}s_is_j$$

- Spins that agree have a lower energy
- Heat disturbs this tendency
- \implies one of the simplest models to show a **phase transition**.

More:

- Basic theory of cooperative phenomena.
- Mapping to NP-HARD problems (e.g. graph MAX-CUT).
- Pletora of applications for models with binary variables: neurons, votes, stock prices...

•

Higher-order Ising models¹

$$H^{\text{CS}} = -h \sum_{i} s_{i} - \sum_{\ell=1}^{\ell_{\text{max}}} J_{\ell} \sum_{\{\sigma \in \mathcal{H}: |\sigma| = \ell\}} \left[2 \bigotimes_{i \in \sigma} s_{i} - 1 \right]$$

$$\Delta_{H} = +J_{\ell}$$

$$\Delta_{H} = -J_{\ell}$$

For $\ell_{\rm max}>1$ different from traditional p-spin models:

$$H^{\mathrm{BS}} = -h\sum_i s_i - \sum_{\ell=1}^{\ell_{\max}} J_\ell \sum_{\{\sigma \in \mathcal{H}: |\sigma| = \ell\}} \prod_{i \in \sigma} s_i$$

¹T. Robiglio, *et al.* "Synergistic signatures of group mechanisms in higher-order systems." Phys. Rev. Lett. 134, 137401 (2025).

Mean-field

Two main assumptions:

• Write the spin state at site i as:

$$s_i = \langle s_i \rangle + \Delta s_i = \langle s_i \rangle + (s_i - \langle s_i \rangle).$$

• Uniform expectation value in the system:

$$\langle s_i \rangle = m \ \forall i.$$

Fully decoupled Hamiltonian:

$$H(m) = -h_{\rm eff} \sum_i s_i \implies m = \tanh\left[(\beta h_{\rm eff}(m))\right]$$

Results for $\ell_{\max} = 2$

Continuos phase transition:

Beyond 3-body interactions

For $\ell_{\rm max} > 2$ we "recover" the abrupt phase² transition:

²I. Iacopini, *et al.* "Simplicial models of social contagion." Nat. Comm. 10, 2485 (2019).

Beyond mean-field (Georges-Yedidia expansion)

Magnetization dependent free-energy functional:

$$\mathcal{F}^{\beta}[\mathbf{m}] = \log \sum_{\{\mathbf{s}\}} \exp\left[-\beta H(\mathbf{s}) + \sum_{i} \rho_{i}^{\beta}(S_{i} - m_{i})\right]$$

expanded around $\beta = 0$:

$$\mathcal{F}^{\beta}[\mathbf{m}] = \mathcal{F}^{\beta}[\mathbf{m}] \Big|_{\beta=0} + \left. \frac{\partial \mathcal{F}^{\beta}[\mathbf{m}]}{\partial \beta} \right|_{\beta=0} \beta + \frac{1}{2} \left. \frac{\partial^2 \mathcal{F}^{\beta}[\mathbf{m}]}{\partial \beta^2} \right|_{\beta=0} \beta^2 + \dots$$

• At $\beta = 0$ spins are fully decoupled:

$$\langle \prod_{i=1}^{\alpha} s_i \rangle |_{\beta=0} = \prod_{i=1}^{\alpha} m_i$$

Beyond mean-field

0

$$^{\mathrm{th}} \rightarrow \mathrm{Entropy}$$

$$1^{st} \rightarrow Mean-field energy$$

 $\dots \rightarrow$ Corrections (e.g. Onsager reaction term)

On a d-regular 3-hypergraph:

$$f(m) = \log g(m) - \frac{\beta J_2 d}{2} m^2 - \frac{(\beta J_2)^2 d}{8} (1 - m^2)^2 + O(\beta^3)$$

Wrap-up

- There is a **new higher-order model** in town.
- Don't stop at three body when discussing higher-order model.
- Georges-Yedidia expansion to go **beyond mean-field**.

• Related talk

Gangmin Son, Higher-order networks 1, Wed. 11:00 - 13:00

Thank you!

Leonardo Di Gaetano

Check out the two papers:

Phys. Rev. Lett. 134, 137401 arXiv:2411.19618

Ada Altieri

Giovanni Petri

Federico Battiston

thomas.robiglio@it-u.at thomasrobiglio.github.io skewed.de/lab