INFERENTIAL CLUSTERING REVEALS ADMINISTRATIVE BOUNDARIES IN AUSTRIAN MIGRATION NETWORKS

NetSci 2025, Maastricht, 5th June 2025

Martina Contisciani Central European University, Vienna, AT

with Thomas Robiglio, Márton Karsai, Tiago P. Peixoto

Austrian Internal Migration Network¹

- Node *i*: municipality (N = 2093)
- Directed and weighted edge x_{ij} : relocations $(E \sim 70K)$
- Years 2002-2021, aggregated annually

¹https://data.statistik.gv.at/

Austrian Internal Migration Network¹

- Node *i*: municipality (N = 2093)
- Directed and weighted edge x_{ij} : relocations $(E \sim 70K)$
- Years 2002-2021, aggregated annually

We analyse twenty distinct networks that capture migration flows for each year. The results in this presentation refer to the year 2013.

¹https://data.statistik.gv.at/

The rate of movement (I_{ij}) between two locations tends to increase with the product of their population densities (p_i, p_j) , and to decay with their distance (d_{ij}) :

$$\mathbb{E}[I_{ij}] := \mu_{ij} = K \frac{\left(p_i p_j\right)^\alpha}{d_{ij}^\beta}$$

The rate of movement (I_{ij}) between two locations tends to increase with the product of their population densities (p_i, p_j) , and to decay with their distance (d_{ij}) :

$$\mathbb{E}[I_{ij}] := \mu_{ij} = K \frac{\left(p_i p_j\right)^{\alpha}}{d_{ij}^{\beta}}$$

The rate of movement (I_{ij}) between two locations tends to increase with the product of their population densities (p_i, p_j) , and to decay with their distance (d_{ij}) :

$$\mathbb{E}[I_{ij}] := \mu_{ij} = K \frac{\left(p_i p_j\right)^{\alpha}}{d_{ij}^{\beta}}$$

But, hidden discrepancies in relation to geographical and urban-rural information.

Weighted Stochastic Block Model²

Given a partition **b** of the municipalities into B groups, the migrations between two locations are sampled only according to their group memberships:

$$P(\mathbf{x} \,|\, \boldsymbol{\theta}, \mathbf{b}) = \prod_{ij} P(x_{ij} \,|\, \boldsymbol{\theta}_{b_i, b_j})$$

- + $P(x_{ij}\,|\,\theta_{b_i,b_j})$ is a kernel distribution conditioned only on the groups
- Number of groups B inferred from data
- Hierarchical partition

²T. P. Peixoto, Physical Review E 97, 012306 (2018)

INFERRED HIERARCHICAL PARTITION

INFERRED HIERARCHICAL PARTITION

Inferred groups at level l = 1

INFERRED HIERARCHICAL PARTITION

Inferred groups at level l = 2

Administrative Boundaries

Around 47% of the district borders coincide exactly with the boundaries between the inferred groups, and the same holds for $\sim 72\%$ of the federal state boundaries.

Administrative Boundaries

Around 47% of the district borders coincide exactly with the boundaries between the inferred groups, and the same holds for $\sim 72\%$ of the federal state boundaries.

Administrative Boundaries in Binary Network

District-level effects become more visible when the magnitudes are excluded, and the match between district borders and inferred boundaries reaches 78%.

MAIN TAKEAWAYS

- Migration flows in Austria are driven by more than gravity
- Inferential clustering reveals effects of:
 - $\diamond~$ administrative boundaries
 - $\diamond \ {\bf urban} {\bf rural} \ {\bf divide}$
- Patterns consistent over twenty years

MAIN TAKEAWAYS

- Migration flows in Austria are driven by more than gravity
- Inferential clustering reveals effects of:
 - $\diamond~$ administrative boundaries
 - $\diamond \ {\bf urban} {\bf rural} \ {\bf divide}$
- Patterns consistent over twenty years

Next step of the MOMA project: provide explanations of the observed patterns

THANK YOU!

Stay tuned... Soon on arXiv!

☑ contiscianim@ceu.edu⊕ mcontisc.github.io

Thomas Robiglio

Márton Karsai

Tiago P. Peixoto

The migration flows between two locations are modelled as Poisson-distributed random variables

$$I_{ij} \sim \mathrm{Pois}(\mu_{ij})$$

with

$$I_{ij} = \begin{cases} x_{ij} + x_{ji} & \text{if } i \neq j \\ x_{ii} & \text{if } i = j \end{cases} \quad \text{and} \quad \mu_{ij} = \begin{cases} K \frac{(p_i p_j)^{\alpha}}{d_{ij}^{\beta}} & \text{if } i \neq j \\ C p_i^{\delta} & \text{if } i = j \end{cases}$$

.

To generate directed synthetic networks, we sample the edge weights \hat{x}_{ij} from the estimated Poisson gravity model rates as

$$\hat{x}_{ij} \sim \begin{cases} \mathrm{Pois}(\mu_{ij}/2) & \mathrm{if} \; i \neq j \\ \mathrm{Pois}(\mu_{ii}) & \mathrm{if} \; i = j \end{cases} \, .$$

INFERRED PARAMETERS GRAVITY MODEL

INFERRED AFFINITY MATRICES

INFERRED PARTITIONS

Inferred groups at level l = 3

FEDERAL STATE BOUNDARIES

Administrative Boundaries Over Time

URBAN-RURAL CLASSIFICATION

Additional Results

(a) Migration volumes in relation to districts

(c) Migration volumes in relation to federal states

(b) Inferred groups from a gravity model sample

