Mesoscopic description of deviations from gravity models in Austrian migration flows

Thomas Robiglio

IT:U Interdisciplinary Transformation University Austria DNDS, Central European University Inverse Complexity Lab

with Martina Contisciani, Márton Karsai, and Tiago P. Peixoto

September 24, 2025

Modeling migration

Statistical modeling of migration (and mobility) data¹:

- understand driving forces
- make predictions
- test hypothesis

Internal migrations in Austria²

MIGSTAT - Wanderungsstatistik - all relocations of the Austrian residents from 2002 to 2021: Changes of main residence between and within Austrian municipalities ($\sim 6.5-8\times 10^5/\mathrm{y}$)

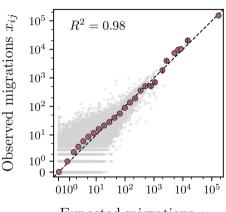
¹H. Barbosa, et al., Physics Reports 734, 1 (2018)

²https://data.statistik.gv.at/

"Gravity" models³

The rate of movement (x_{ij}) between two locations increases with the product of their populations (p_i, p_j) , and decays with their distance (d_{ij}) :

$$\mathbb{E}[x_{ij}] \equiv \mu_{ij} = K \frac{\left(p_i p_j\right)^{\alpha}}{d_{ij}^{\beta}}$$



Expected migrations μ_{ij}

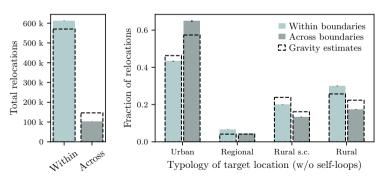
³G. K. Zipf, American Sociological Review, Vol. 11, No. 6 (1946)

"Gravity" models

What else is there? Is this enough to describe the data?

e.g. hidden discrepancies in relation to geographical and urban-rural information.

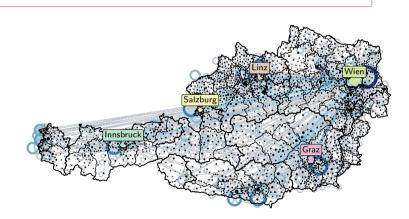
Migration volumes in relation to federal states



Network models

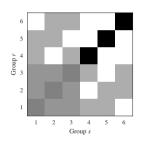
General approach: migration phenomena are fundamentally relational.

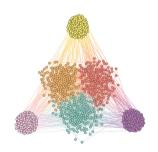
- Node i: municipality (N = 2093)
- Directed and weighted edge x_{ij} : relocations $(E \sim 70K)$
- Years 2002-2021, aggregated annually



Network models

Weighted Stochastic Block Model⁴: given a partition **b** of the municipalities into B groups, the migrations between two locations are sampled only according to their group memberships.

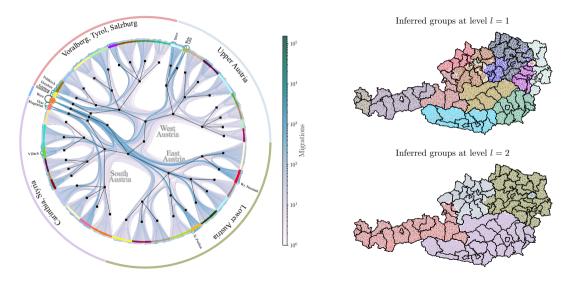




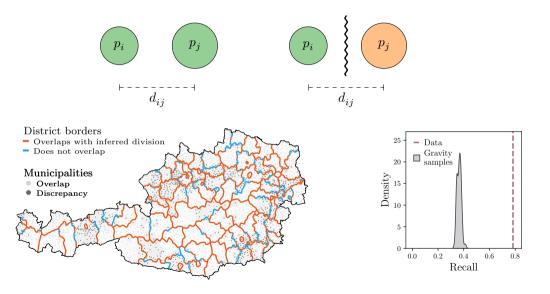
No assumption on locations, contiguity, or population.

⁴T. P. Peixoto, Physical Review E, 97, 012306 (2018)

Inferred hierarchical partition



Administrative barriers to migration



Main take-aways

- Migrations in Austria are driven by more than gravity
- Network methodology to go beyond traditional approaches
- Inferential clustering reveals effects of:
 - ⋄ administrative boundaries
 - ⋄ urban-rural divide
- Patterns are consistent over twenty years

Next steps

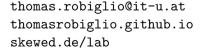
- Full mapping of the migration flows
- Understanding the **drivers of migration** (e.g. socio-economic/demographic predictors)

Thank you!

Check out the pre-print:

Multiscale patterns of migration flows in Austria: regionalization, administrative barriers, and urbanrural divides

arXiv:2507.11503



Martina Contisciani

Márton Karsai

Tiago P. Peixoto

Funded by:

Gravity Model

The migration flows between two locations are modelled as Poisson-distributed random variables

$$I_{ij} \sim \text{Pois}(\mu_{ij})$$

with

$$I_{ij} = \begin{cases} x_{ij} + x_{ji} & \text{if } i \neq j \\ x_{ii} & \text{if } i = j \end{cases} \quad \text{and} \quad \mu_{ij} = \begin{cases} K \frac{(p_i p_j)^{\alpha}}{d_{ij}^{\beta}} & \text{if } i \neq j \\ C p_i^{\delta} & \text{if } i = j \end{cases}.$$

To generate directed synthetic networks, we sample the edge weights \hat{x}_{ij} from the estimated Poisson gravity model rates as

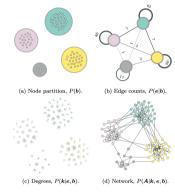
$$\hat{x}_{ij} \sim \begin{cases} \operatorname{Pois}(\mu_{ij}/2) & \text{if } i \neq j \\ \operatorname{Pois}(\mu_{ii}) & \text{if } i = j \end{cases}.$$

Stochastic Block Model

Given a partition **b** of the municipalities into B groups, the migration events from j to i depends only on their group memberships:

$$P(\mathbf{A} \,|\, \mathbf{e}, \mathbf{b}) = \prod_{ij} P(A_{ij} \,|\, e_{b_i, b_j})$$

- Microcanonical formulation
- Degree-corrected SBM



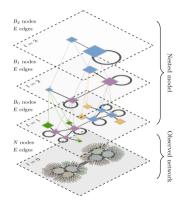
Nonparametric Bayesian framework⁵ with the full joint distribution being:

$$P(\mathbf{A}, \mathbf{k}, \mathbf{e}, \mathbf{b}) = P(\mathbf{A} | \mathbf{k}, \mathbf{e}, \mathbf{b}) P(\mathbf{k} | \mathbf{e}, \mathbf{b}) P(\mathbf{e}) P(\mathbf{b})$$

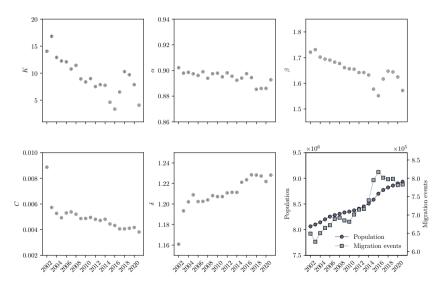
⁵T. P. Peixoto, Physical Review X 4, 011047 (2014)

Nested Stochastic Block Model

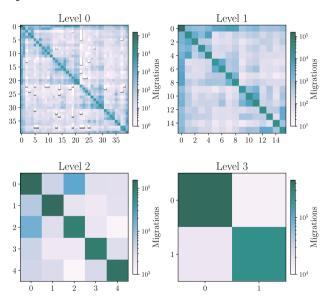
- $P(\mathbf{e})$ is chosen to enforce a hierarchical partition
- The inference of the hierarchical partition is performed through sampling from the posterior distribution $P(\{\mathbf{b_l}\} \mid \mathbf{A})$ using an agglomerative multilevel Markov chain Monte Carlo algorithm
- Robust against overfitting



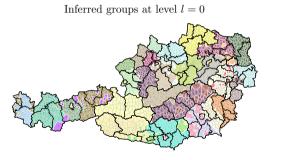
Inferred Parameters Gravity Model



Inferred Affinity Matrices



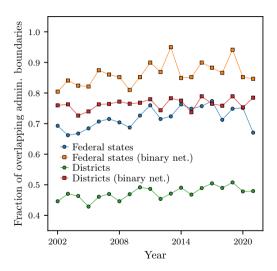
Inferred Partitions



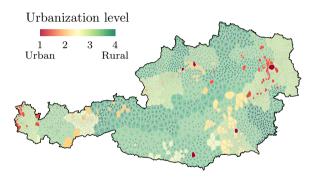
Inferred groups at level l=3

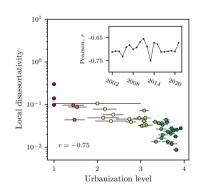
Federal State Boundaries

Administrative Boundaries Over Time



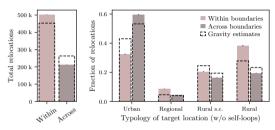
Urban-Rural Classification



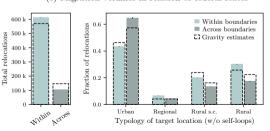


Additional Results

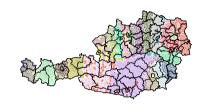
(a) Migration volumes in relation to districts



(c) Migration volumes in relation to federal states



(b) Inferred groups from a gravity model sample



(d) Comparison with gravity model samples

