THOMAS ROBIGLIO

Via Saluzzo 31, 10125, Torino, Italy

 $(+39)3931663146 \diamond$ robigliothomas@gmail.com \diamond thomasrobiglio.github.io

EDUCATION

r 2021 - July 2023 0/110 Cum Laude
uated 28 July 2023
r 2018 - July 2021 107/110
uated 20 July 2021

EXPERIENCE

Centre de Physique Théorique, Marseille Internship student

Worked under the supervision of Prof. Alain Barrat and Prof. Mathieu Génois on the statistical analysis and mathematical modeling of face-to-face interactions in human gatherings.

CENTAI Institute

Visiting Student

Worked under the supervision of Prof. Giovanni Petri on the relation between mechanism and behavior in complex systems with higher-order interactions.

ISI foundation

Student

Assisted senior research scientist Dr. Giovanni Petri in the study of high-order interactions and spreading phenomena on simplicial complexes. The results of this work are the focus of my undergraduate thesis and are contained in [1].

PARTICIPATIONS IN SCHOOLS AND CONFERENCES

- * International School and Conference on Network Science Vienna (Austria), 10/07/2023 14/07/2023
- * Spring College on the Physics of Complex Systems, ICTP Trieste (Italy), 20/02/2023 17/03/2023
- * Conference on Complex Systems, Palma de Mallorca (Spain), 17-21/10/2022

SOFTWARE

- * CompleX Group Interactions (XGI): a Python package for higher-order networks.
- * HOI: a Python package for higher-order information theory, optimized using JAX.

March 2023 - July 2023

February 2023 - September 2023

April 2021 - July 2021

- * Python 🅏, Julia, C++, ROOT, Wolfram Mathematica
- * MS Office Package, LAT_EX
- * Languages: French, Italian (Native) English (Proficient).

INTERESTS

Italian politics, novels, podcasts. Sports junkie: football (Torino FC), cycling and mountaineering.

PUBLICATIONS

 Maxime Lucas et al. "Simplicially driven simple contagion". In: *Phys. Rev. Res.* 5 (1 Mar. 2023), p. 013201. DOI: 10.1103/PhysRevResearch.5.013201. URL: https://link.aps.org/doi/10. 1103/PhysRevResearch.5.013201.

Thomas Robiglio et al. Synergistic signatures of group mechanisms in higher-order systems. 2024. arXiv: 2401.11588 [physics.soc-ph].