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Simplicially driven simple contagion
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Single contagion processes are known to display a continuous transition from an epidemic-free state to an
epidemic one, for contagion rates above a critical threshold. This transition can become discontinuous when two
simple contagion processes are coupled in a bidirectional symmetric way. However, in many cases, the coupling
is not symmetric and the nature of the processes can differ. For example, risky social behaviors—such as not
wearing masks or engaging in large gatherings—can affect the spread of a disease, and their adoption dynamics
via social reinforcement mechanisms are better described by complex contagion models rather than by simple
contagions, more appropriate for disease spreading. Here, we consider a simplicial contagion (describing the
adoption of a behavior) that unidirectionally drives a simple contagion (describing a disease propagation). We
show, both analytically and numerically, that, above a critical driving strength, such a driven simple contagion can
exhibit both discontinuous transitions and bistability, absent otherwise. Our results provide a route for a simple
contagion process to display the phenomenology of a higher-order contagion, through a driving mechanism that
may be hidden or unobservable in practical instances.
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I. INTRODUCTION

Contagion processes have been widely studied using com-
plex networks as the underlying structure supporting the
propagation of diseases, innovation, and opinions [1–4]. The
most studied examples include simple contagion models
(where a contagion event can be caused by a single contact),
such as the paradigmatic susceptible-infectious-susceptible
(SIS), widely used to describe the diffusion of a single
pathogen in a population [5,6].

In reality, however, contagion processes often coexist and
affect each other [7]. Infectious diseases can indeed display
complex comorbidity interactions, in which the presence of
a pathogen impacts the individual susceptibility towards an-
other [8], like HIV increasing susceptibility to other sexually
transmitted diseases [9]. Modeling efforts in this direction
include both cooperation [10–12] and competition [13–15]
between diseases. However, to date, models of interacting
contagion processes have been developed under two main
assumptions: (i) the processes are simple contagions, and (ii)
their interaction is symmetric, that is, bidirectional and of
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equal strength. Within these restrictions, cooperative models
can display a discontinuous transition to the epidemic state
[11], and become indistinguishable at the mean-field level
from complex contagion models describing social reinforce-
ment [16] (where exposure to multiple sources presenting the
same stimulus is needed for the contagion to occur [17]).

Interactions between spreading processes are naturally not
restricted to infectious diseases: a social behavior can also
dramatically impact the spread of a disease [18–22]. A cur-
rent and cogent example is the impact of the adoption of
risky behaviors (no hand washing, no masks, no self-isolation,
or reduction of face-to-face contacts) during the COVID
pandemic [22]. Motivated by this example, we challenge
both restrictions described above. First, it is known that re-
inforcement mechanisms influence social behavior so that
models of simple contagion—that assume independent pair-
wise exposures—do not offer the most adequate description
[17]. Simplicial contagion has been proposed as an alter-
native approach to account for simultaneous exposures via
group-contagion events [23,24]. Such group (“higherorder”)
contributions induce discontinuous transitions, bistability, and
critical mass phenomena even for single processes [25–29].
Second, most contagion processes do not interact in a sym-
metric way. This can happen, e.g., for diseases with very
different time scales [30], or when considering interactions
between a disease and the adoption of prudent behaviors [21],
which is instead driven by a phenomenologically and analyti-
cally different social contagion process.

Here, we show that a simple contagion (describing in-
fectious disease spreading) can exhibit the characteristics of
a simplicial contagion when it is cooperatively driven by a
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FIG. 1. The model of interacting simplicial contagions. (a) Tran-
sition probabilities between the compartments: susceptible (S, gray),
infected exclusively by one disease (A or B, respectively blue/red)
or by both (AB, black). (b)–(d) A susceptible node i can acquire A
after a contact with an infectious k hyperedge (this also includes
AB individuals). In (d), since i is part of a 2-simplex composed by
two other infectious nodes, the infection can come both from each
of the two 1-hyperedges (links) with probability βA and from the
2-hyperedge with probability β

�
A . (e)–(g) If i is already infected with

B, the probability of getting A for each contact is affected by the
coupling factor εBA. The same rules symmetrically apply to B instead
of A.

simplicial contagion (describing the spread of a risky social
behavior). Namely, a simple contagion in the epidemic-free
regime can exhibit an abrupt transition to the epidemic regime,
as well as bistability, if the cooperative driving by the so-
cial process is stronger than a critical value. In particular,
in the asymmetrically driven case, discontinuous transitions
can only take place when the driving process is simplicial,
contrary to the case of symmetric interactions. We describe
the phase diagram of the system through a mean-field (MF)
approach, complemented by the numerical integration of
coupled Markov-chain equations, and provide an analytical
expression for the critical value of the cooperation. Finally, we
identify effective infectivities as markers of the abrupt driven
transition by rewriting the MF equations as a simple contagion
with effective parameters.

II. RESULTS

A. Model for interacting simplicial contagion processes

We consider a model for two interacting spreading pro-
cesses, denoted as A and B, which also include simplicial
contagions [23,25]. Individuals are represented by a set of N
nodes that can each be in one of four compartments, following
the standard SIS framework [6]: those susceptible to both
diseases (S), infected exclusively by one of the two diseases
(either A or B), or by both (AB) [see Fig. 1(a)]. The compart-
ment membership of each node i is encoded in three binary
variables xγ

i ∈ {0, 1}, where γ ∈ {A, B, AB}. If node i is in
state γ then xγ

i = 1, otherwise it is zero; each node has either
one nonzero or all zero variables. The density of nodes in
state γ is given, at each time t , by ργ (t ) = 1

N

∑N
i=1 xγ

i (t ). The
densities �ρ(t ) = {ρA(t ), ρB(t ), ρAB(t )} serve as macroscopic
order parameters (with ρS (t ) = 1 − ρA(t ) − ρB(t ) − ρAB(t )
the density of susceptible individuals). Nodes can interact
in pairs or larger groups so that contagion events, which
cause nodes to change compartment, take place on top of a
contact structure that allows for higher-order (nonpairwise)
interactions [24,31–33]. We mathematically represent a group
encounter as a k hyperedge, a set of k + 1 interacting nodes

[34]. For simplicity, we allow for interactions up to dimen-
sion k = 2, i.e., on 1-hyperedges (links) and 2-hyperedges
(triangles). Six parameters—three for each disease—yield
contagion and recovery probabilities (Fig. 1). The infectivity
of disease x ∈ {A, B} at order k = 1, βx,1 ≡ βx, is the prob-
ability per unit time for a node i susceptible to pathogen
x to acquire x from an “infectious” 1-hyperedge it is part
of [Figs. 1(b)–1(d)]. Similarly, βx,2 ≡ β�

x control infections
coming from 2-hyperedges [Fig. 1(d)]. Note that all other
nodes in the hyperedge need to be infectious for the hyperedge
to be considered so. Finally, μx ∈ [0, 1] denotes the standard
spontaneous recovery probability (from x) per unit time.

The interaction between the two contagion processes
is controlled via two additional nonnegative parameters, the
coupling factors εAB and εBA that multiply the transition proba-
bilities to a double infection (AB) from a single infection (A or
B). For example, the transition B → AB occurs with probabil-
ity εBAβA from a pairwise contact with A [see Figs. 1(e)–1(g)].
The two processes cooperate if εxx′ > 1 and compete if
εxx′ < 1, while they are independent if εxx′ = 1. Note that
the symmetry εAB = εBA does not need to hold. Furthermore,
although the model is defined on a generic higher-order
structure, we focus here on simplicial complexes, a particular
class of hypergraphs [24]. In a simplicial complex K, by
definition, groups of nodes are called simplices and respect
downward closure; each sub-simplex ν ⊂ σ built from subsets
of a simplex σ ⊂ K is also part of the complex K [in an in-
fectious 2-simplex thus, contagion can occur both through the
1-hyperedges contained and through the 2-hyperedge itself,
see Figs. 1(d) and 1(g)]. We make this choice for coherence
with previous work [23], but it can be relaxed to more general
hypergraphs [25–27,29] without affecting the MF results.

B. Mean-field description

We consider the MF description of the model, obtained
under a homogeneous mixing hypothesis [35]. For simplicity,
we assume identical recovery rates for the two processes,
that is, μA = μB = μ. In fact, for μA 	= μB the equations can
be simply refactored in terms of a new parameter δ =
μA/μB leaving the asymptotic dynamics unchanged (see
Appendix D). We also introduce the rescaled infectivity pa-
rameters λx = βx〈k〉/μ and λ�

x = β�
x 〈k�〉/μ, for x ∈ {A, B},

where 〈k〉 and 〈k�〉 respectively denote the average numbers
of 1- and 2-hyperedges incidents on a node. After rescaling
time by μ, the general mean-field equations describing the
evolution of the densities are

ρ̇A = −ρA + λAρS (ρA + ρAB) + λ
�
A ρS (ρA + ρAB)2

+ ρAB − εABλBρA(ρB + ρAB)

− εABλ
�
B ρA(ρB + ρAB)2, (1a)

ρ̇B = −ρB + λBρS (ρB + ρAB) + λ
�
B ρS (ρB + ρAB)2

+ ρAB − εBAλAρB(ρA + ρAB)

− εBAλ
�
A ρB(ρA + ρAB)2, (1b)

ρ̇AB = −2ρAB + εABλBρA(ρB + ρAB)

+ εABλ
�
B ρA(ρB + ρAB)2 + εBAλAρB(ρA + ρAB)

+ εBAλ
�
A ρB(ρA + ρAB)2 (1c)
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with the additional condition that

ρS = 1 − ρA − ρB − ρAB. (2)

In the following, we focus on a simplicial contagion A
(representing a risky social behavior) that cooperatively and
uni-directionally drives a simple contagion B (representing a
disease). We thus set λ

�
A > 0, λ

�
B = 0, εAB > 1, and εBA = 1.

In this scenario, it is convenient to consider the total density
of infectious individuals for each contagion, regardless of
whether they are also infected by the other one. Formally,
we introduce two new variables ρAtot = ρA + ρAB and ρBtot =
ρB + ρAB. In other words, ρAtot is the total density of people
with a risky behavior, having been infected by B (ρAB), or not
(ρA). Similarly, ρBtot is the total density of people infected by
disease B, having a risky behavior (ρAB), or not (ρB). After
introducing these two variables, we end up with the system of
coupled equations (see Appendix A):

ρ̇Atot = ρAtot

[−1 + λA
(
1 − ρAtot

) + λ
�
A ρAtot

(
1 − ρAtot

)]
, (3a)

ρ̇Btot = ρBtot

[−1 + λB
(
1 − ρBtot

)
+ λB(εAB − 1)

(
ρAtot − ρAB

)]
, (3b)

ρ̇AB = −2ρAB + εABλB
(
ρAtot − ρAB

)
ρBtot

+ λA
(
ρBtot − ρAB

)
ρAtot + λ

�
A

(
ρBtot − ρAB

)
ρ2

Atot
. (3c)

Equation (3) includes two known specific cases. First, with-
out any interaction between the processes (εAB = εBA = 1),
ρBtot and ρAtot evolve independently as a simple and simpli-
cial contagion [23], respectively. Second, by considering only
pairwise interactions, λ

�
A = 0 = λ

�
B , A and B evolve as inter-

acting simple contagions [8]. In the general case we consider
(εBA = 1), the dynamics of ρAtot is decoupled from the other
two variables and drives them.

We first study the nonequilibrium stationary state (NESS)
reached by the system of Eq. (3) at large times ρ∗

Btot
=

limt→∞ ρBtot (t ), by numerical integration. Figure 2 shows the
resulting ρ∗

Btot
values and their transitions. The most interesting

case is given by λB < 1 as, without a driving process A, the
simple contagion process B would be in the epidemic-free
absorbing state (ρ∗

Btot
= 0). We thus illustrate how the B NESS

ρ∗
Btot

depends on the parameters of the driver A, on the coupling
εAB, and how it can transition to the epidemic active state,
despite λB < 1.

For λ
�
A � 1, we always obtain a continuous transition for

ρ∗
Btot

[see Figs. 2(a) and 2(b)]. On the other hand, if λ
�
A > 1,

the driven process can exhibit a discontinuous transition [see
Figs. 2(c) and 2(d)]. More precisely, the transition changes
from continuous to discontinuous when the coupling parame-
ter εAB becomes larger than a critical value εc

AB. Above this
threshold [εAB > εc

AB, black circles in Fig. 2(c)], there is a
discontinuous transition at a critical value λc

A that does not
depend on εAB. For weaker cooperation [εAB < εc

AB, white and
gray symbols in Fig. 2(c)], a continuous transition occurs
from ρ∗

Btot
= 0 to the epidemic state ρ∗

Btot
> 0 when λA crosses

another critical value λ′c
A � λc

A. In other words, λ′c
A is the

critical value of λA at which the continuous transition occurs,
for εAB < εc

AB, and its value decreases as εAB increases—e.g.,
from λ′c

A ≈ 1.1 (white symbols) to λ′c
A ≈ 0.7 (gray symbols).

On the contrary, λc
A (yellow label) is where the discontinuous

FIG. 2. Abrupt transition induced by a simplicial driver. A
simplicial driver process for A, with λ

�
A = 2.5, can induce a dis-

continuous transition (c), (d), contrary to a simple driver (a), (b),
with λ

�
A = 0 [λB = 0.8, λ

�
B = 0]. Note the different scales on the

horizontal axes. (a), (c) Stationary solutions ρ∗
Btot

of the MF Eq. (3)
plotted as a function of the rescaled pairwise infectivity λA for three
values of the driving strength εAB. In (c), the transition of the simple
contagion B becomes discontinuous above a critical value of coop-
eration εc

AB. (b), (d) Heatmaps of ρ∗
Btot

as a function of λA and εAB.
Dashed horizontal lines correspond to the selected εAB values shown
in (a) and (c), respectively. The blue dot in (d) highlights the critical
point (λc

A, εc
AB ). The blue and red crosses represent a visual hint to

locate the results within the full phase diagram of Fig. 3.

transition occurs, for εAB > εc
AB, and does not depend on εAB.

Note that λ′c
A → λc

A in the limit εAB → εc
AB.

It is important to note that the epidemic-free absorbing
state ρ∗

Btot
= 0 remains stable as long as λA < 1. As a conse-

quence, there is a region of bistability λc
A < λA < 1 (region

shaded with yellow background) for εAB > εc
AB. Bistability

can also be observed when εAB < εc
AB in the region λ′c

A <

λA < 1 (gray symbols) as long as λ′c
A < 1. For λ′c

A � 1 (white
symbols), the continuous transition occurs for values larger
than one and there is no region of bistability. Finally, when
λ′c

A < 1, the stability of the absorbing state implies the exis-
tence of a forward discontinuous transition at λ′c

A = 1 (upward
arrows). In conclusion, the simple contagion B exhibits char-
acteristics of a simplicial contagion—an abrupt transition and
bistability—due to the driving of the simplicial contagion A.

To analytically explain this behavior, we need to find the
NESS by setting ρ̇x = 0 (see Appendix B for additional de-
tails). Solving ρ̇Atot = 0, as Eq. (3a) exactly maps back to the
single simplicial contagion analyzed in Ref. [23], leads to a
trivial solution ρ∗

Atot
= 0 and two other NESS ρ∗,±

Atot
. Similarly,

solving the full two-dimensional system (ρBtot , ρAB) leads to
the absorbing state (0,0) and the implicit solutions for ρ∗

Btot
:

ρ∗,±
Btot

= 1 − 1

λB
+ (

ρ∗,±
Atot

− ρ∗,±
AB

)
(εAB − 1). (4)

Equation (4) implicitly contains two solutions ± from ρ∗,±
Atot

and ρ∗,±
AB .

Using the implicit solutions in Eq. (4), we can understand
the behavior shown in Fig. 2. If λ

�
A < 1 [Figs. 2(a) and 2(b)],
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FIG. 3. Phase diagram of the system. The (λB, λ
�
A ) parameter

space exhibits four regions. In region I (λB � 1, λ�
A > 1), ρ∗

Btot
under-

goes an abrupt transition if the driving cooperation is strong enough,
εAB > εc

AB. The value of εc
AB is represented by shades of green. For

visual clarity, the green scale is truncated at a maximum value of five,
so that larger values are represented by the same color as five. The red
cross corresponds to the case shown in Figs. 2(c) and 2(d). In region
II (λB > 1, λ

�
A > 1), εc

AB = 1 and the transition is discontinuous for
all εAB > 1. For λ

�
A � 1, that is regions III and IV, the transition

is always continuous. The blue cross indicates the case shown in
Figs. 2(a) and 2(b).

ρ∗
Atot

exhibits a continuous transition at λA = 1, below which
it is zero (see [23]). This implies that ρAB also goes to the
absorbing state if λA < 1: if nobody is infected by A, nobody
can be infected by both A and B. As a consequence, the term
coming from the cooperation vanishes: ρ∗,±

Atot
− ρ∗,±

AB = 0.
Hence, from Eq. (4), we have limλA→1− ρ∗,±

Btot
= 1 − 1

λB
� 0

(recall λB < 1). If negative, it is not a valid solution and
only the absorbing state is valid. As λA increases above one,
ρ∗,+

Atot
increases continuously [23], leading ρ∗,±

Btot
to also cross

continuously zero at a certain λA � 1. For λ
�
A � 1 instead,

ρ∗
Atot

has a discontinuous transition at λA = λc
A which implies

that ρ∗
AB has one, too. Consequently, from Eq. (4), since

λB < 1, we have limλA→λc,−
A

ρ∗
Btot

= 0, but limλA→λc,+
A

ρ∗,±
Btot

> 0
above a certain value εAB > εc

AB. Hence, this critical value
εc

AB can be derived analytically by solving ρ∗,+
Btot

= 0 at λc
A.

In other words, we find the critical driving strength εc
AB by

finding the curve ρ∗,+
Btot

, between the gray and black curves in
Fig. 2(c), such that it reaches zero at λc

A. This corresponds
to the case λB � 1, λ

�
A > 1 which we denoted as region I in

Fig. 3. Similarly, if λB > 1 instead (with λ
�
A > 1, region II),

it suffices solving ρ∗,+
Btot

= 1 − 1/λB at λc
A because 1 − 1/λB

is now the pretransition NESS. In summary, the discontinuity
is controlled by the term coming from the cooperation,
(ρ∗,±

Atot
− ρ∗,±

AB )(εAB − 1) which will be discontinuous if A has
a discontinuous transition.

In short, the nature of the transition depends on the new
second term induced by the driving in Eq. (4) and, in partic-
ular, on the λA value at which it becomes positive. This fact
allows us to obtain the critical εc

AB at which the discontinuous
transition in B becomes possible (Fig. 3):

εc
AB =

⎧⎨
⎩

√
λ

�
A −λB

(
√

λ
�
A −1)λB

in region I
(
λB � 1, λ

�
A > 1

)
,

1 in region II
(
λB > 1, λ

�
A > 1

)
.

(5)

In region I, increasing λ
�
A or λB makes εc

AB decrease, so that
discontinuous transitions are obtained for smaller values of

the driving strength εAB. In fact, εc
AB → +∞ as λ

�
A → 1 or

λB → 0. In region II, all values of cooperation εAB > 1 yield
a discontinuous transition. Finally, no critical value of coop-
eration can be defined in regions III and IV (λ�

A � 1), where
transitions are always continuous.

C. Effective formalism

In this section, we devise an effective contagion theory to
highlight the origins of the observed transitions. In particular,
we saw that, for εAB > εc

AB—that is, when simplicial behavior
is possible for B—the driven process B will exhibit discon-
tinuous transitions as a function of λA. We illustrate how this
phenomenology emerges by rewriting the dynamics of B as an
effective simple contagion following Ref. [16].

First, note that we can rewrite the MF equation of the single
simplicial ρAtot from Eq. (3a) as a simple contagion

ρ̇Atot = −ρAtot + λ̃A ρAtot

[
1 − ρAtot

]
, (6)

with effective infectivity λ̃A = λA + λ
�
A ρAtot . As expected, the

effective infectivity depends on both the simple and simplicial
infectivities. Since Eq. (6) is written as a simple contagion, its
well known stationary solutions given by 1 − 1/λ̃A and the
effective infectivity also has a critical value of one.

Similarly, we can also rewrite Eq. (3b) of the driven ρBtot as
a simple contagion

ρ̇Btot = −ρBtot + λ̃B ρBtot

[
1 − ρBtot

]
, (7)

with effective infectivity

λ̃B = λB + λB(εAB − 1)
1

1 − ρBtot

ρA. (8)

Since we observed characteristics of the driver A in the driven
contagion B, we may want to further cast its effective infec-
tivity into a form similar to that of A: λ̃B = λB + λ

�
B ρBtot . This

is achieved by defining an effective simplicial infectivity

λ̃
�
B = λB(εAB − 1)

ρA

ρBtot

(
1 − ρBtot

) , (9)

which implicitly depends on λA and λ
�
A through ρA (see addi-

tional Fig. 6).
If there is no interaction (εAB = 1), we recover λ̃B = λB

because the effective simplicial infectivity vanishes, λ̃
�
B = 0,

as expected. More importantly, since ρBtot evolves according to
the effectively simple contagion of Eq. (7), its stationary solu-
tion is given by 1 − 1/λ̃B which yields a critical value λ̃B = 1.
This can help distinguish between the transitions observed in
Fig. 2. Indeed, below the critical value, λ̃B < 1, the only stable
NESS of ρBtot is zero, and above it there is also a positive
solution. Thus, the driven contagion B has a transition to an
epidemic state if and only if λ̃B crosses one as λA increases.
Finally and most importantly, this transition is discontinuous
if and only if the transition of λ̃B across the value one is
discontinuous. This can be seen by comparing the three curves
in Fig. 4(a)—crossing the value one (white background) dis-
continuously (black) or continuously (gray and white)—with
the corresponding curves for ρ∗

Btot
in Fig. 2(c).

013201-4



SIMPLICIALLY DRIVEN SIMPLE CONTAGION PHYSICAL REVIEW RESEARCH 5, 013201 (2023)

1.40

FIG. 4. The discontinuous nature of the driven contagion B can
be determined from its effective infectivity λ̃B. (a) We show λ̃B

against the infectivity λA for several values of cooperation εAB, cor-
responding to the curves in Fig. 2(c). The full phase diagram as a
function of both λA and εAB is shown as a heatmap in panel (b), where
the dot corresponds to the critical point (λc

A, εc
AB ). The background

color in (a) corresponds to the colorbar in (b). It corresponds to the
values of the vertical axis and highlight visually the critical value
λ̃B = 1.

D. Temporal properties

So far, we lack information about the temporal trajectories,
which, in practical settings, are often the only data available.
Consider observing the spread of B via ρBtot (t ), while the
driving social contagion process A remains unobservable. In-
terestingly, the observed B evolves differently depending on
the initial conditions of the hidden process A.

We show the phenomenology described beyond the ho-
mogeneous mixing hypothesis by shifting to a Markov-chain
formalism [36,37]. With this microscopic approach we can
encode any interaction structure between nodes—contrary
to MF approaches that assume homogeneous mixing of the
population—while keeping the computational cost lower than
the one required for Monte Carlo simulations. The com-
plete Markov-chain description of our model can be found
in Appendix C. We build a synthetic random simplicial
complex up to dimension two by means of the generative
model introduced in Ref. [23]. This model, a direct ex-
tension of Erdös-Rényi-like models for graphs, allows to
generate a simplicial complex starting from a number of
nodes that get randomly connected to form simplices. Here
we generate a simplicial complex with N = 2000 nodes
having 〈k〉 = 20 and 〈k�〉 = 6, and integrate the associated
Markov equations to follow the temporal evolution of the
system.

We consider the scenario of the black curve (εAB = 1.75)
of Fig. 2(b), that is, with a simplicial driver A (λ�

A = 2.5).
We fix all other parameters, including the initial condition
ρBtot (0), but vary the initial condition of the driver, ρAtot (0).
As shown in Fig. 5, if the driver contagion A is in the en-
demic regime but not in the bistability region (e.g., λA = 1.2),
ρBtot reaches the same NESS for all values of ρAtot (0), but
with different transient dynamics and even nonmonotonic
evolutions [Fig. 5(a)]. Moreover, if the simplicial driver is in
the bistability region (λA = 0.7), it induces bistability in B;
ρBtot (t ) can reach two different states, depending on the driv-
ing initial condition, even though all “visible” B parameters
are fixed [Fig. 5(b)]. Note that this bistability emerges only
if the driving is simplicial with λ

�
A > 1 (see also additional

Fig. 7).

FIG. 5. The temporal evolution of the simple contagion B is
affected by the initial conditions of the (hidden) simplicial driver A.
We show ρBtot over time, resulting from the numerical integration of
the Markov-chain equations for a simplicial complex with N = 2000
nodes, 〈k〉 = 20, and 〈k�〉 = 6, for A in (a) the endemic region
λA = 1.2, and (b) the bistable region, λA = 0.7. Shades of red from
dark to light represent a range of initial conditions of the driver ρA(0)
from 0.001 to 0.35 [see additional Fig. 7 for the temporal evolution
of ρA(t )]. In (b), the simple contagion process B can reach one of
two stationary states, depending on the initial conditions of the driver
A. Other parameters are set to λB = 0.8, λ

�
B = 0, εAB = 1.75, and

λ
�
A = 2.5.

III. DISCUSSION

In conclusion, our results highlight that an abrupt transition
in the observed process can occur as a function of the control
parameter of a second—potentially hidden—driver process.
Consider an observer of an epidemic process of unknown
nature. A natural intervention would try to reduce the in-
trinsic infectivity of the spreading pathogen, e.g., through
pharmaceutical interventions or reduction of social contacts
(sanitary lockdowns). This would, however, lead only to a
continuous change in the incidence. However, if the spread
is driven by an underlying complex contagion, then acting
on the hidden driver process (e.g., trying to reduce the social
adoption of risky behaviors) could more effectively lead to an
abrupt transition to the epidemic-free state (if the interaction
is strong enough εAB > εc

AB). Finally, different populations
could be characterized by different properties of the hidden
behavioral contagion process (different values of λA and λ


A
values), thus leading to a large diversity of temporal evolu-
tions, and—potentially—of final outcomes of the pathogen’s
spread, without the need for different intrinsic infectivity
properties of the pathogen across these populations.

Results also suggest that other driving spreading processes
could yield a similar phenomenology if they exhibit a dis-
continuous transition (e.g., [38]), inducing a change from a
continuous to a discontinuous transition in the driven process.
We note in this context that the framework of Ref. [39] sug-
gests a universal route to abrupt transitions, achieved through
the addition of a control parameter to a process that displays
a continuous phase transition. However, the situation that
we have explored here broadens the picture. Indeed, if both
spreading processes are simple contagions, it appears that a
bidirectional interaction (leading to a feedback loop) is an
additional necessary condition for a discontinuous transition
to emerge. In the case of a unidirectional coupling, instead, the
driving process needs to be itself simplicial with bistability.
Our results thus provide a different route to the emergence
of abrupt transitions in epidemic-like processes due to the
asymmetric coupling of the contagion dynamics, as opposed
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to the addition of a control parameter [39]. This resonates
with recent results in synchronization phenomena [40]. The
exact conditions under which these routes apply to coupled
systems in general would be an interesting direction for future
work. Another interesting perspective would consist of the
analysis of real-world data and the development of tools to
detect the footprints of simple, complex, or coupled processes
from observed time series [41] in order to discriminate them
or, potentially, perform full reconstruction [42].

The code used in this study is available at [43].
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APPENDIX A: DERIVATION OF MF DESCRIPTION

As explained in the main text, we focus on the case εBA=1,
λ

�
B = 0, so that Eq. (1) becomes

ρ̇A = −ρA + λAρS (ρA + ρAB) + λ
�
A ρS (ρA + ρAB)2

+ ρAB − εABλBρA(ρB + ρAB), (A1a)

ρ̇B = −ρB + λBρS (ρB + ρAB) + ρAB

− λAρB(ρA + ρAB) − λ
�
A ρB(ρA + ρAB)2, (A1b)

ρ̇AB = −2ρAB + εABλBρA(ρB + ρAB)

+ λAρB(ρA + ρAB) + λ
�
A ρB(ρA + ρAB)2. (A1c)

Then, we apply the following change of variables: ρAtot =
ρA + ρAB, ρBtot = ρB + ρAB. This yields

ρ̇Atot = (−ρA − ρAB) + λAρAtot [1 − ρBtot − ρA + ρB]

+ λ
�
A ρ2

Atot
[1 − ρBtot − ρA + ρB], (A2a)

ρ̇Btot = (−ρB − ρAB) + λBρBtot [1 − ρAtot − ρB + εABρA],

(A2b)

ρ̇AB = −2ρAB + εABλBρAρBtot + λAρBρAtot + λ
�
A ρBρ2

Atot
.

(A2c)

We further rewrite this by replacing all remaining ρA and
ρB, and using the identity 1 − ρBtot − ρA + ρB = 1 − ρAtot :

ρ̇Atot = −ρAtot + λAρAtot [1 − ρAtot ] + λ
�
A ρ2

Atot
[1 − ρAtot ],

(A3a)

ρ̇Btot = −ρBtot + λBρBtot [1 − ρAtot − ρBtot + ρAB

+ εAB(ρAtot − ρAB)], (A3b)

ρ̇AB = −2ρAB + εABλB
(
ρAtot − ρAB

)
ρBtot

+ λA
(
ρBtot − ρAB

)
ρAtot + λ

�
A

(
ρBtot − ρAB

)
ρ2

Atot
, (A3c)

which can be refactored to obtain Eq. (3) from the main text.

APPENDIX B: DERIVATION OF THE MF FIXED POINTS

Equation (3a) is the same as the simplicial contagion from
Ref. [23], and its nontrivial solutions are

ρ∗,±
Atot

=
(
λ

�
A − λA

) ±
√(

λA − λ
�
A

)2 + 4λ
�
A (λA − 1)

2λ
�
A

. (B1)

For this isolated case, we know that λ
�
A controls the type

of transition to the epidemic state [23]. That is, for λ
�
A � 1,

the bifurcation diagram has a continuous transition at λA =
1 from ρ∗

Atot
= 0 to the epidemic state ρ∗,+

Atot
. When instead

λ
�
A > 1, a discontinuous transition to ρ∗,+

Atot
occurs at λc

A =
−λ

�
A + 2

√
λ

�
A � 1. The epidemic-free state remains stable for

λA � 1, but becomes unstable above. This leads to bistability
in the parameter region {λ�

A > 1, λc
A � λA � 1}. The discon-

tinuous transition is therefore the direct consequence of a
sufficiently strong three-body (higher-order) interaction in A
(λ�

A > 1).
The remaining two-dimensional system (ρBtot , ρAB) can be

solved analytically by hand or with the help of software such
as Mathematica [44]. As discussed, the implicit solution for
Eq. (3b) is given by Eq. (4).

To solve for ρAB, we rewrite Eq. (3c) by factorizing and
setting the left-hand side to zero:

0 = −2ρAB + εABλB(ρAtot − ρAB)ρBtot

+ λA(ρBtot − ρAB)ρAtot + λ
�
A (ρBtot − ρAB)ρ2

Atot
, (B2)

= ρAB
[−2 − εABλBρBtot − λAρAtot − λ

�
A ρ2

Atot

]
+ ρAtotρBtot

[
εABλB + λA + λ

�
A ρAtot

]
, (B3)

from which we already see that ρ∗
AB = 0 if ρAtot = 0 or

ρBtot = 0. Now, we inject the expression of ρ∗
Btot

from Eq. (4)
and cast the equation into quadratic form in ρAB:

0 = Aρ2
AB + BρAB + C, (B4)

where

A = + εABλBE−
AB, (B5)

B = − 2 − εABλB
(
�−

B + E−
ABρ∗

Atot

)
− (λA + E−

ABK )ρ∗
Atot

− λ
�
A ρ∗2

Atot
, (B6)

C = ρ∗
Atot

K
(
�−

B + E−
ABρ∗

Atot

)
. (B7)

To shorten the notation, we have also defined

E−
AB = εAB − 1, (B8)

�−
i = 1 − 1/λi, (B9)

K = εABλB + λA + λ
�
A ρ∗

Atot
. (B10)
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The nonzero solutions for ρAB is the standard quadratic solu-
tion

ρ∗,±
AB = −B ± √

B2 − 4AC

2A
, (B11)

which, unfolded, is an expression in terms of the parameters
of the system only. These together with ρ∗

Atot
can be reinjected

into Eq. (4) for ρ∗
Btot

to close the system.

APPENDIX C: MARKOV-CHAIN APPROACH

Here, we write a system of coupled Markov-chain equa-
tions which govern the microscopic evolution of our model
[36,37]. More precisely, we can write down the con-
ditional probability P(xγ

i (t + 1) = 1|x(t ), θ, A) ≡ pi
γ (t ) of

finding each node i in state γ ∈ {S, A, B, AB} at time t + 1
given the probability vector representing the status of all
nodes at time t x(t ) = xγ

i (t ), the model parameters θ =
{βA, β

�
A , βB, β

�
B , μA, μB, εAB, εBA}, and the structure A. Using

the simplified notation pi
γ (t ), we impose that, at each time,

pi
S (t ) = 1 − pi

A(t ) − pi
B(t ) − pi

AB(t ). (C1)

The Markov-chain equations for the three states are the fol-
lowing:

pi
AB(t + 1) = + pB

i(t )(1 − μB)
(
1 − qi

A(t )
)

+ pi
A(t )(1 − μA)

(
1 − qi

B(t )
)

+ pi
AB(t )(1 − μA)(1 − μB), (C2a)

pi
A(t + 1) = +pi

AB(t )μB(1 − μA)

+ pi
A(t )(1 − μA)qi

B(t )

+ pi
B(t )μB

(
1 − qi

A(t )
)

+ pi
S (t )

(
1 − qi

AB(t )
)

f i
A(t ), (C2b)

pi
B(t + 1) = +pi

AB(t )μA(1 − μB)

+ pi
B(t )(1 − μB)qi

A(t )

+ pi
A(t )μA

(
1 − qi

B(t )
)

+ pi
S (t )

(
1 − qi

AB(t )
)

f i
B(t ). (C2c)

The different qi
x(t ) denote the probability of node i not being

infected by disease x by any of the simplices it partici-
pates in. Considering again only contributions up to D = 2,

we have:

qi
A(t ) =

∏
j∈V

{
1 − ai jεBAβA

[
pj

A(t ) + pj
AB(t )

]} ∏
j,l∈V

[
1 − ai jlεBAβ

�
A

[
pj

A(t ) + pj
AB(t )

][
pl

A(t ) + pl
AB(t )

]]
, (C3a)

qi
B(t ) =

∏
j∈V

{
1 − ai jεABβB

[
pj

B(t ) + pj
AB(t )

]} ∏
j,l∈V

[
1 − ai jlεABβ

�
B

[
pj

B(t ) + pj
AB(t )

][
pl

B(t ) + pl
AB(t )

]]
, (C3b)

qi
AB(t ) =

∏
j∈V

{
1 − ai j

[
βA pj

A(t ) + βB pj
B(t ) + [

βA(1 − βB) + βB(1 − βA) + βAβB
]
pj

AB(t )
]}

×
∏
j,l∈V

{
1 − ai jl

[
β

�
A

[
pj

A(t )pl
A(t ) + pj

A(t )pl
AB(t ) + pj

AB(t )pl
A(t )

] + β
�
B

[
pj

B(t )pl
B(t ) + pj

B(t )pl
AB(t ) + pj

AB(t )pl
B(t )

]

+ [
β

�
A

(
1 − β

�
B

) + β
�
B

(
1 − β

�
A

) + β
�
A β

�
B pj

AB(t )pl
AB(t )

]]}

=
∏
j∈V

{
1 − ai j

[
βA

[
pj

A(t ) + pj
AB(t )

] + βB
[
pj

B(t ) + pj
AB(t )

] − βAβB
[
pj

AB(t )
]]} ∏

j,l∈V

{
1 − ai jl

[
β

�
A

[
pj

A(t ) + pj
AB(t )

]

× [
pl

A(t ) + pl
AB(t )

] + β
�
B

[
pj

B(t ) + pj
AB(t )

][
pl

B(t ) + pl
AB(t )

]−β
�
A β

�
B pj

AB(t )pl
AB(t )

]}
, (C3c)

where the first product of each equation accounts for the
contagion through the links of the simplicial complex K.
These links are fully specified by means of the standard
adjacency matrix {ai j}, whose elements ai j = 0, 1 denote
the absence or presence of a link (i, j). Similarly, the sec-
ond product accounts for the contagion of i through the
2-simplices of K (triangles), which are analogously specified
by the elements of the adjacency tensor {ai jl}. This tensor
is the three-dimensional version of the adjacency matrix, in
which a nonzero element denotes the presence of a 2-simplex
(i, j, l ).

Finally, the factors f i
A(t ) and f i

B(t ) in Eq. (C2) denote the
probability of transitioning from state S to one of the states A
or B when exposed simultaneously to both pathogens. Assum-
ing an equal probability for both diseases [37], we can write:

f i
A(t ) = q̄i

A(t )
(
1 − 0.5q̄i

B(t )
)

q̄i
A(t )

(
1 − 0.5q̄i

B(t )
) + q̄i

B(t )
(
1 − 0.5q̄i

A(t )
) , (C4a)

f i
B(t ) = q̄i

B(t )
(
1 − 0.5q̄i

A(t )
)

q̄i
A(t )

(
1 − 0.5q̄i

B(t )
) + q̄i

B(t )
(
1 − 0.5q̄i

A(t )
) , (C4b)
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where q̄i
A(t ) and q̄i

B(t ) correspond to 1 − qi
A(t ) and 1 − qi

B(t ),
as given by Eq. (C3), after setting εAB = εBA = 1.

APPENDIX D: CASE OF DIFFERENT
RECOVERY RATES: μA �= μB

In the main text we assumed identical recovery rates. Here,
we remove this constraint and allow them to be potentially
different, so that μA 	= μB. By rescaling all equations by μA

(instead of μ), we have the following—instead of Eq. (A1):

ρ̇A = −ρA + λAρS (ρA + ρAB) + λ
�
A ρS (ρA + ρAB)2

+ μB

μA
ρAB − εABλB

μB

μA
ρA(ρB + ρAB), (D1a)

ρ̇B = −μB

μA
ρB + λB

μB

μA
ρS (ρB + ρAB)

+ 1ρAB − λAρB(ρA + ρAB) − λ
�
A ρB(ρA + ρAB)2,

(D1b)

ρ̇AB = −
(

1 + μB

μA

)
ρAB + εABλB

μB

μA
ρA(ρB + ρAB)

+ λAρB(ρA + ρAB) + λ
�
A ρB(ρA + ρAB)2 (D1c)

which, introducing the total densities, becomes

ρ̇Atot = = (−ρA − ρAB) + λAρAtot

[
1 − ρBtot − ρA + ρB

]
+ λ

�
A ρ2

Atot

[
1 − ρBtot − ρA + ρB

]
, (D2a)

ρ̇Btot = (−ρB − ρAB)
μB

μA

+ λB
μB

μA
ρBtot

[
1 − ρAtot − ρB + εABρA

]
, (D2b)

ρ̇AB = −
(

1 + μB

μA

)
ρAB + εABλB

μB

μA
ρAρBtot

+ λAρBρAtot + λ
�
A ρBρ2

Atot
, (D2c)

and then

ρAtot = −ρAtot + λAρAtot [1 − ρAtot ] + λ
�
A ρ2

Atot
[1 − ρAtot ],

(D3a)

ρ̇Btot = −ρBtot

μB

μA
+ λB

μB

μA
ρBtot

[
1 − ρAtot − ρBtot

+ ρAB + εAB
(
ρAtot − ρAB

)]
, (D3b)

ρ̇AB = −
(

1 + μB

μA

)
ρAB + εABλB

μB

μA
(ρAtot − ρAB)ρBtot

+ λA(ρBtot − ρAB)ρAtot + λ
�
A (ρBtot − ρAB)ρ2

Atot
(D3c)

which, compared to the case of identical recovery rates, con-
tain the additional μB

μA
factors. We denote the dimensionless

FIG. 6. Effective triangle infectivity λ̃
�
B of simple contagion B as

a function of λA, for several values of the interaction εAB (indicated
on the curves). The dashed gray curve indicates the value λc

A, where
diverge λ̃

�
B diverges.

ratio δ = μB

μA
, and refactor the equations as

ρ̇Atot = ρAtot

[−1 + λA
(
1 − ρAtot

) + λ
�
A ρAtot

(
1 − ρAtot

)]
, (D4a)

ρ̇Btot = ρBtotδ
[−1+ λB

(
1− ρBtot

) + λB(εAB −1)
(
ρAtot − ρAB

)]
,

(D4b)

ρ̇AB = −(1 + δ)ρAB + εABλBδ
(
ρAtot − ρAB

)
ρBtot

+ λA
(
ρBtot − ρAB

)
ρAtot + λ

�
A

(
ρBtot − ρAB

)
ρ2

Atot
. (D4c)

So, the equation for ρAtot (simplagion) is unchanged, as ex-
pected. For ρBtot , we notice a temporal rescaling by a factor δ,
but the implicit solution is unchanged,

ρ∗,±
Btot

= 1 − 1

λB
+ (

ρ∗,±
Atot

− ρ∗,±
AB

)
(εAB − 1). (D5)

We can consider two limits where the timescales for A and B
are of different orders. First, in the limit δ � 1, which means
that B heals much slower than A, ρ̇Btot ≈ 0, that is process B is
quasistatic compared to the timescale of process A. Thus, ρAtot

converges fast to its NESS and ρBtot is driven by that NESS.
Second, in the limit δ � 1, when B heals much faster than A,
it is the opposite. It is possible then to rescale time by δ to
see that process A now appears quasistatic compared to the
timescale of B. So, ρBtot converges fast to its NESS which is in
fact adiabatically moving toward its asymptotic NESS, driven
by ρAtot that slowly converges to its own NESS.

APPENDIX E: EFFECTIVE FORMALISM

Equation (3a) can be rewritten using an effective simplicial
infectivity λ̃

�
B defined in Eq. (9). We show this quantity as a

function of the infectivities λA and εAB in Fig. 6.

APPENDIX F: TEMPORAL PROPERTIES

In Fig. 5, we show how the temporal evolution of a simple
contagion B is affected by the initial conditions of the (hidden)
simplicial driver A. In Fig. 7, we plot those same curves
together with the temporal evolution of the driver process A.
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FIG. 7. The temporal evolution of the simple contagion B is affected by the initial conditions of the hidden driver process A. As for Fig. 5
of the main text, we show ρBtot over time (a)–( c), but together with the temporal dynamics of the driver process, as given by ρAtot (d)–(f). In
(a), (d) a simple driver process is used (λ�

A = 0.8), while in (b), (e) and (c), (f) the driver process A is truly simplicial (λ�
A = 2.5). The process

A is placed either in the endemic region, λA = 1.2 [(a), (d) and (b), (e)] or in the bistable region (λA = 0.7). Different curves correspond to
different initial conditions of the driver process, ρA(0). The other parameters are set to λB = 0.8, λ

�
B = 0, and εAB = 2.
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