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The interplay between causal mechanisms and emerging collective behaviors is a central aspect
of the understanding, control, and prediction of complex networked systems. Here we study this
interplay in the context of higher-order mechanisms and behaviors in two representative models:
a simplicial Ising model and a simplicial social contagion model. In both systems, we find that
group (higher-order) interactions show emergent synergistic (higher-order) behavior. The emergent
synergy appears only at the group level and depends in a complex non-linear way on the tradeoff
between the strengths of the low- and higher-order mechanisms, and is invisible to low-order behav-
ioral observables. Finally, we present a simple method to detect higher-order mechanisms by using
this signature.

Mechanisms and behaviors are two facets of the study
of complex systems: mechanisms are the structural and
dynamical rules that control the causal evolution of the
system; behaviors, instead, refer to the measurable ob-
servables that quantify statistical interdependencies be-
tween units of a system in space and time (Fig. 1). The
nature of the relation between the two facets and the
limits of our capacity to reconstruct it is a long-standing
problem in complex interacting systems [1–7].

Existing methods to study each of the two facets
mostly adopt pairwise (lower-order) descriptions: pair-
wise network representations for mechanisms [8, 9],
and low-order information-theoretic metrics for behav-
iors [10–12]. However, despite their success, these low-
order methods often fail to fully capture the intricate
nuances inherent to many complex systems [13, 14], and
non-pairwise (also called polyadic, or higher-order) meth-
ods are being developed: higher-order network represen-
tations such as hypergraph or simplicial complexes [15]
and higher-order behavorial metrics, both topological [16]
and information-theoretic [17, 18].

In this context, a central question is then: what is the
relation between higher-order mechanisms and behaviors?
Intuition would suggest that observing higher-order be-
haviors implies the presence of higher-order mechanisms.
However, this is not the case: early results show that sys-
tems with only low-order mechanisms can display non-
trivial higher-order behaviors [19], and—conversely—
higher-order mechanisms can lead to low-order behav-
iors [14]. Thus, a systematic investigation of this complex
relation is needed.

Toward this goal, here we thoroughly explore the
mechanism-behaviors relation in higher-order versions of
two canonical dynamical processes—an Ising model [20,
21] that we introduce, and an existing social contagion

FIG. 1. Mechanisms versus behaviors in complex sys-
tems. (a) Mechanisms consists of (i) the topological structure
of interactions between nodes, and (ii) the rules controlling
the temporal evolution of the states of the nodes. (b) Behav-
iors are the observable states of the system and encompass
its spatial and temporal patterns, interdependencies between
units, and emergent phenomena. In experimental data, be-
haviors are often the only available.

model [22]—and quantify higher-order behavior by defin-
ing the total dynamical O-information, an extension of
the transfer entropy to groups of variables of arbitrary
size [17, 23]. In both systems, we uncover an emer-
gent synergistic behavioral signature of group interac-
tions. Synergistic behavior manifests when information
about a group of variables can only be recovered by con-
sidering the joint state of all variables, and cannot be
reconstructed from subsets of units of the group. Cru-
cially, the observed behavioral signatures display a com-
plex non-linear dependence on the strength of the pa-
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rameter controlling the higher-order mechanisms. While
these signatures can in some regimes be overshadowed
by other emergent phenomena in the systems (e.g. the
transition to the magnetized phase in the Ising model),
when present, they are invisible to low-order observables,
and thus represent genuine higher-order phenomena. Fi-
nally, we present a simple method leveraging the emer-
gent synergies for the explicit detection of higher-order
mechanisms.

Quantifying higher-order behaviors. The partial in-
formation decomposition (PID) framework is a well-
established approach to characterize the information-
sharing interdependencies between three or more vari-
ables [24–26]. Qualitatively, these relations can be of
three types: redundant, synergistic, or unique. Consider
three variables sharing information, X1, X2 and X3. In-
formation is said to be redundant if it is replicated over
the variables (that is, recoverable from X1 ∨ X2 ∨ X3),
synergistic if it can only be recovered from their joint
state (X1 ∧ X2 ∧ X3), and unique if it can only be re-
covered from one variable and nowhere else. In this
framework, mutual information has been extended to
groups of three or more variables by the so-called O-
information Ω [17]. To generalize the O-information of
multivariate time series from equal-time correlations to
time-lagged correlations—similarly to how transfer en-
tropy extends mutual information [27]— Stramaglia et
al. proposed dynamical O-information dΩ [23]. This
quantity is defined by (i) considering n random variables
X = (X1, ..., Xn) on which we compute the standard O
information Ωn(X), (ii) adding a new random variable
Y , and (iii) computing the variation of O-information:
∆n = Ωn+1(X, Y )− Ωn(X). To remove potentially con-
founding shared information due to common history or
input signals, the dynamical O-information is defined by
conditioning ∆n on the history Y0 of the target variable
Y :

dΩn(Y ;X) ≡(1− n) I(Y ;X|Y0)+

+

n∑

j=1

I(Y ;X−j |Y0). (1)

Here, I(·; ·|·) is the conditional mutual information,
Y0(t) = (y(t), y(t− 1), ..., y(t− τ + 1)) is the past and
present of Y , and Y = Y (t) = y(t+ 1) its next instance.
The parameter τ is the temporal horizon of the time se-
ries and can typically be set to a relevant time scale of the
process. To quantify the dynamical information within
a group of n units, regardless of source-target assign-
ments, we define the total (or symmetrized) dynamical
O-information as:

dΩtot.
n (X) ≡

n∑

j=1

dΩn−1(Xj ;X−j). (2)

Total dynamical O-information inherits from O-
information the property of being a signed metric:

dΩtot.
n (X) > 0 indicates that information-sharing among

the units of X is dominated by redundancy, dΩtot.
n (X) <

0 indicates that it is dominated by synergy, and
dΩtot.

n (X) = 0 indicates a balance between both.
Dynamical systems with higher-order mechanisms.

We consider two dynamical models with higher-order in-
teractions: a simplicial Ising model and the simplicial
model of social contagion [22]. Both are defined on sim-
plicial complexes, a particular class of hypergraphs [15]
that encode multi-node interactions as simplices and re-
spect downard closure—for any simplex in the simplicial
complex, all its sub-simplices must be included too.
The first discrete dynamical system we consider is a

simplicial Ising model. This model is an extension of
the standard Ising model [20, 21] that includes group
interactions of different strengths for simplices of different
sizes. We consider a simplicial complex K with average
generalized degrees {⟨kℓ⟩}, where each of the N nodes
has two possible states: spin-up (Si = +1) or spin-down
(Si = −1). The model is defined by the Hamiltonian:

H =− J0

N∑

i=1

Si+

−
ℓmax∑

ℓ=1

Jℓ
⟨kℓ⟩

∑

{σ∈K:|σ|=ℓ}

[
2
⊗

i∈σ

Si − 1

]
(3)

where ℓmax is the maximal order of K and:

n⊗

i=1

Si = δ
(
S1, ..., Sn

)
=

{
1 if S1 = ... = Sn

0 otherwise
(4)

is the Kronecker delta with an arbitrary number of bi-
nary arguments. For ℓmax = 1, i.e. structures with
only pairwise interactions, the model reduces to the stan-
dard Ising model with a uniform magnetic field J0 and
two-body coupling strength J1. The introduction of the
Kronecker delta—instead of the usual product [28–30]—
in the coupling terms is necessary to preserve the par-
ity symmetry under spin flip at all sites of the dyadic
model without magnetic field (J0 = 0). We consider
the dynamics of this system to be the Markov chain
of Monte Carlo moves performed with the Metropolis-
Hastings acceptance-rejection rule [31] at temperature T .
The second discrete dynamical model that we consider

is the simplicial model of social contagion [22]. Follow-
ing the SIS framework [32], we associate with each of
the N nodes of a simplicial complex K a binary random
variable xi(t) ∈ {0, 1}. At each time step we divide the
population of individuals into two classes of susceptible
(S) and infectious (I) nodes, corresponding, respectively,
to the values 0 and 1 of the state variables xi(t). At the
initial time step t0, a finite fraction of infected agents
ρ0 =

∑
i xi(t0)/N is placed in the population. At each

time step, each susceptible agent (xi(t) = 0) becomes in-
fected with a probability βℓ if it belongs to a ℓ-simplex
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where all other ℓ nodes are infected. Infected agents re-
cover independently with probability µ. As is customary,
we introduce the rescaled infectivity parameter of order
ℓ: λℓ = βℓ⟨kℓ⟩/µ, where kℓ is the generalized degree of
order ℓ.

For computational feasibility, in the following, we limit
ourselves to group mechanisms (interactions) and inter-
dependencies of up to three nodes, that is, ℓmax = 2.
Unless stated otherwise, the results shown are obtained
in a random simplicial complex with N = 200 nodes and
average degrees ⟨k1⟩ = 20, ⟨k2⟩ = 6. The Ising model was
simulated for 3×104 time steps, and the contagion model
for 104 time steps. Other parameters were set to T = 1
(Ising) and µ = 0.8 and ρ0 = 0.3 (social contagion).

Emergence of synergistic signatures of group interac-
tions. We simulate the two dynamical systems for dif-
ferent values of the control parameters and compute the
total dynamical O-information dΩtot.

3 on the resulting
time series for different types of groups of three nodes:
2-simplices, 3-cliques, and uniformly randomly chosen
triplets of nodes not part of the previous two groups.
In both cases, we set the delay τ = 1 as both systems are
Markovian. As we increase the strength of group inter-
actions (J2, the three-body coupling in the Ising model,
and λ2, the group rescaled infection rate in the contagion
model), we observe an increasing co-occurrence of higher-
order mechanisms and synergistic higher-order behaviors
(Fig. 2). In both systems, we see that all types of groups
of three nodes display synergistic higher-order behaviors
(dΩtot.

3 < 0); however, and crucially, as we increase the
relative strength of the higher-order mechanisms (J2 and
λ2), we see that 2-simplices, i.e. the genuine higher-order
interactions, display significantly stronger synergistic be-
haviors than the other groups of three nodes.

Insufficiency of lower-order metrics. Although we
showed the presence of strong synergistic behaviors in the
presence of genuine higher-order interactions, we still do
not know the extent of this correspondence, nor whether
low-order observables could already detect—and to what
degree—the presence of higher-order interactions. More-
over, we need to determine whether the group behav-
iors are truly higher-order or just the byproduct of low-
order interdependencies. To answer these questions, we
compare our higher-order metric (total dynamical O-
information) with a lower-order information metric, over
the parameter space of both systems. For the lower-order
metric, for each group of three nodes, we compute the
sum Σ of the transfer entropies between the time series
of the three possible node pairs. For each of these met-
rics, we then quantify the difference in behavior between
2-simplices and 3-cliques (that is, lower- and higher-order
mechanisms, respectively) in terms of the statistical dis-
tance [33]. The statistical distance (or total variation
distance) d [34] between two distributions—here, P2 for
2-simplices and P3 for 3-cliques—over a common alpha-
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FIG. 2. Synergistic signature of higher-order mech-
anisms. We show box plots of the distributions of total dy-
namical O-info dΩtot.

3 in (a) the simplicial Ising, and (b) the
simplicial contagion models. Distributions are over all occur-
rences of three types of motifs in the simplicial complex: 2-
simplices (blue), 3-cliques (green), and random triplets (red),
and are shown for increasing values of the group mecha-
nism strengths (J2 and λ2). As strength increases, higher-
order interactions become more synergistic (negative dΩtot.

3 )
than lower ones. Symbols “ns” and “****” indicate a non-
significant and significant (p ≤ 10−4) difference, respectively,
between the distributions (t-test).

bet χ, is defined as:

d(P2, P3) =
1

2

∑

x∈χ

|P2(x)− P3(x)| , (5)

which we denote d23 ≡ d(P2, P3) for short. Distance d23
quantifies the overlap and similarity of the two distribu-
tions. By definition, it takes values in [0, 1]: d23 = 0 if the
two distributions are identical, and d23 = 1 if the two dis-
tributions take non-zero values on non-overlapping sub-
sets of χ [35].
We find two main results—valid for both systems—

about the relation between higher-order behaviors and
mechanisms. First, we see that the low-order behavioral
metric does not see much difference between the lower-
(3-cliques) and higher-order mechanisms (2-simplices)
whereas the higher-order metric does. Indeed, this is in-
dicated by the uniformly low values of d23 with low-order
metric Σ (Fig. 3a,c) with respect to the large values ex-
hibited by d23 with the higher-order metric, the total dy-
namical O-information (Fig. 3b,d). The latter is consis-
tent with the synergetic signature results shown in Fig. 2.
So, the higher-order mechanisms can be identified—
and distinguished from low-order mechanisms—by the
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higher-order behavioral metric but not by the low-order
one.

Second, focusing on the higher-order behavioral metric
dΩtot.

3 , we see that the difference between the 2-simplices
and 3-cliques is large (large d23, dark blue) over a fi-
nite region of parameter space (Fig. 3b,d). This region
corresponds to the co-occurrence of higher-order mecha-
nisms and synergistic higher-order behavior (as shown in
Fig. 2). We see that it occurs for sufficiently large values
of the strength of the higher-order mechanisms (J2 and
λ2).

The above observations are common to both models,
but each model also has its own specificities. Although
fully explaining the shape of the dark blue region is a
hard task, we here describe it and explain some of its
features. In the Ising model (Fig. 3b), the large d23 ≳
0.5 region (dark blue) does not extend above Jcr.

1 = 1
(dashed line), which is the magnetization threshold of
the pairwise model with no magnetic field [36]. This can
be understood because, above that value, the system is
magnetized and no information can be recovered as the
system is frozen in the configuration with minimal energy.
Below the threshold (J1 < 1), the region appears above
a certain strength of the three-body coupling J2 ≳ 0.5,
and that value seems to decrease as J1 increases.

In the contagion model (Fig. 3d) the large d23 region
displays larger values (0.7 ≲ d23 ≲ 1.0). It does not
appear to be bounded from above, contrary to that of
the Ising model. However, it is bounded from below.
First, for λ1 < 1 (left of the vertical dashed line), the re-
gion appears only above λcr. = 2

√
λ2−λ2 (dashed-dotted

line). These values are known: λ1 = 1 is the epidemic
threshold of the pairwise version of the model (SIS) and
λcr. is the value where the discontinuous transition oc-
curs [22]. This makes sense: below that value, only the
epidemic-free state exists, for which we do not expect
to see higher-order behaviors. Second, the region does
not appear to extend below λ2 = 1 (horizontal dashed
line), below which we know that no discontinuous transi-
tion can exist, and we thus expect the system to behave
more like its low-order variant (SIS). Finally, for larger
λ1, the region starts above values of λ2 that are larger as
λ1 increases, suggesting that their ratio plays a role.

Synergy-based detection of higher-order interactions.
It is possible to exploit the relation between higher-order
mechanisms and behaviors to detect higher-order interac-
tions from dynamic. We set ourselves in the case in which
we want to discriminate between true higher-order inter-
actions (2-simplices) and spurious ones (3-cliques) hav-
ing access to the nodes’ states’ time series, the low-order
structure of the system and its average generalized de-
gree of order ℓ = 2. This setup reproduces the situation
in which we have access to the node-level activity of a
system, its pairwise structure, and some very coarse in-
formation about nodes’ neighborhoods in terms of their
higher-order connectivity (e.g. through local samples).
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FIG. 3. Low-order metrics do not see the synergis-
tic signature of higher-order mechanisms. We show the
statistical distance d23 between the distributions of behavior
of 2-simplices and 3-cliques, for two metrics: (a), (c) sum of
transfer entropies Σ (low-order) and (b), (d) total dynamical
O-information (higher-order). Two models are shown. (a),
(b) The simplicial Ising model, where the dashed line is the
critical coupling strength of the pairwise model Jcr.

1 = 1 with
no magnetic field. (c), (d) The simplicial contagion model,
where the two dashed lines are, respectively, the epidemic
threshold of the pairwise SIS model λcr.

1 = 1 and the crit-
ical value of the rescaled 2-simplices infectivity rate above
which the system shows the discontinuous phase transition
and bistability λcr.

2 = 1, and the dash-dotted line represents
the points (λ1, λ2) where the system undergoes a discontinu-
ous transition [22]. The three white symbols in (b) and (d)
correspond to the parameter values showed in Fig. 2.

The heuristic method for the detection of higher-order
interactions is simple. Given the average generalized de-
gree ⟨k2⟩ and the number of nodes, we can compute the
expected number of 2-simplices in the system as a simple
n△ = N⟨k2⟩/3. Once the expected number of 2-simplices
within the system is computed we compute the total dy-
namical O-information for all groups of three nodes con-
nected by pairwise connections (i.e. the 3-cliques in the
skeleton of the simplicial complex K under study), rank
them by their values of dΩtot.

3 and mark as “predicted”
higher-order interactions the n△ most synergistic ones.

The results of our simple method for the detection of
higher-order interactions are shown in Fig. 4 in terms of
accuracy scores (fraction of true positives). These results
retrace what was already observed with the statistical
distance in the higher-order behavior between 2-simplices
and 3-cliques. The higher-order behavior is more evident
in the simplicial contagion model, allowing for accuracy
scores of up to ∼ 0.9, than in the Ising model, accuracy
scores only up to ∼ 0.7, in the region in which we ob-
serve the synergistic signature this is always significantly
better than the random choice accuracy of 0.3 (see SM).
We also observe a complex non-linear dependence of the
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FIG. 4. Detection of higher-order interactions using
higher-order synergistic behavior. We show the accuracy
(fraction of true positives) of the detection of higher-order
interactions for (a)-(b) the Ising and (c)-(d) the simplicial
contagion models. (a), (c) Full parameter space, and (b), (d)
show three example curves corresponding to the dashed lines
in (a) and (c). The dotted lines in (b) and (d) indicate the
accuracy of the random choice.

accuracy score on the strenght of the parameter control-
ling the he higher-order mechanisms (Fig. 4b,d). This
complex dependency is a byproduct of the non-linear re-
sponse of higher-order behaviors (dΩtot.

3 ) to the varia-
tion of higher-order mechanisms (see SM). This detec-
tion method can be applied to more general set-ups (e.g.
detecting group interactions among all possible combina-
tions of three nodes) leading to similar results.

In conclusion, by exploring the relation between
mechanisms and behaviors in two dynamical systems
with higher-order interactions, we uncovered emergent
synergistic signatures characterizing group mechanisms.
Quantifying higher-order behaviors using dΩtot.

3 , we
showed that in both models an increase in the relative
strength of the parameter controlling the group mech-
anisms in 2-simplices led (non-linearly) to significantly
larger synergistic values of dΩtot

3 . Crucially, low-order
observables (transfer entropy) were not able to capture
these signatures, supporting the importance of higher-
order observables to study group interdependencies that
are irreducible to combinations of low-order ones. By ex-
ploring the space of the control parameters of the two sys-
tems under study, we showed how these synergistic sig-
natures are not always present, and can be overshadowed
by other emergent phenomena in the systems (e.g. the
transition to the magnetized phase in the Ising model).
Finally, we showed that a simple heuristical method that
leveraged these signatures was able to detect higher-order
mechanisms in a simple setting, providing a basis for
future more refined inference schemes. We expect our
results to be relevant for any attempts at reconstruct-

ing [16, 30, 37, 38] and predicting [7, 39] complex inter-
acting systems from signals, as well as for the ongoing
discussion about the nature and importance of higher-
order systems [40].
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Supplemental Material

I. INFORMATION THEORETIC MEASURES

In the following section we present the two information theoretic measures that are used in the main text to probe
low and higher-order behaviors, namely transfer entropy and total dynamical O-information.

A. Transfer Entropy

The Transfer Entropy (TE) is an information-theoretic measure of the directed (time-asymmetric) information
transfer between two random processes [S1]. Given two variables X and Y , the TE from X to Y is defined as the
mutual information between the present of X and the future of Y , conditioned on the past of Y :

T (X → Y ) = T (X;Y ) ≡ I(Xt, Yt+1|Yt) = H(Xt, Yt+1) +H(Yt, Yt+1)−H(Xt, Yt+1, Yt)−H(Yt) (S1)

The definition of the TE is asymmetric to capture the directed influence of the past of one variable on the future
of another. In the main text we use TE as a low-order counterpart to the total dynamical O-information that we use
to probe higher-order behavior. As we wish to consider the total transfer entropy present in a group of three nodes
we sum up all the possible source-target combinations of the three nodes states. Given three variables X1, X2, and
X3 this is given by:

T tot.(X1, X2, X3) =T (X1;X2) + T (X2;X1) + T (X1;X3)+

+ T (X3;X1) + T (X2;X3) + T (X3;X2) (S2)

B. Total dynamical O-information

The partial information decomposition (PID) framework is a well-established approach to characterize the
information-sharing interdependencies between a group of three or more variables [S2–S4]. Qualitatively, these
relations can be of three types: redundant, synergistic, or unique. Consider three variables sharing information,
X1, X2 and X3. Information is said to be redundant if it is replicated over the variables (that is, recoverable from
X1 ∨X2 ∨X3), synergistic if it can only be recovered from their joint state (X1 ∧X2 ∧X3), and unique if it can only
be recovered from one variable and nowhere else.

In this framework, mutual information has been extended to groups of three or more variables by the so-called
O-information (shorthand for “information about Organizational structure”) [S5], which on a vector of n random
variables X = (X1, ..., Xn) is given by:

Ωn(X) ≡ (n− 2)H(X) +
n∑

j=1

[H(Xj)−H(X−j)] , (S3)

where H(·) is the Shannon entropy [S6] and X−j = X \ Xj (see [S5] for a detailed presentation of this metric’s
properties). For our purposes, the relevant property of O-information is that it is a signed metric: Ωn(X) > 0
indicates that information-sharing is dominated by redundancy, Ωn(X) < 0 indicates that it is dominated by synergy,
and Ωn(X) = 0 indicates a balance between both.

Total Dynamical O-information. To generalize the O-information of multivariate time series from equal-time cor-
relations to the time-lagged correlations, Stramaglia et al. proposed dynamical O-information dΩ [S7]. It is defined
by (i) considering n random variables X = (X1, ..., Xn) on which we have defined the standard O-information, and
(ii) adding a new random variable Y . In this way, the O-information of the joint state between set X and the new
variable Y becomes:

Ωn+1(X, Y ) = Ωn(X) + ∆n (S4)
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where:

∆n = (1− n)I(Y ;X) +

n∑

j=1

I(Y ;X−j) (S5)

where I(·; ·) is the canonical mutual information between two variables [S6]. The additional term in ∆n quantifies the
variation of the total O-information induced by the addition of Y , effectively measuring the informational character of
the circuits linking Y to the variables in X. In particular, if ∆n is positive, Y receives mostly redundant information
from the set of variables X, whilst if ∆n is negative, then the influence of X on Y is dominated by synergistic
effects. To remove potentially confounding shared information due to common history or input signals, the dynamical
O-information is defined by conditioning Eqs. (S4)-(S5) on the history Y0 of the target variable Y :

dΩn(Y ;X) ≡ (1− n)I(Y ;X|Y0) +
n∑

j=1

I(Y ;X−j |Y0). (S6)

Here Y0(t) = (y(t), y(t− 1), ..., y(t− τ + 1)) and Y = Y (t) = y(t+ 1) are the samples of Y corresponding to what we
consider the past and present of the variable and to its next instance, respectively. The parameter τ is the temporal
horizon of the time series and can typically be set to a relevant time scale of the process.

To quantify the dynamical information within a group of n units, regardless of source-target assignments, we define
the total (or symmetrized) dynamical O-information as:

dΩtot.
n (X) ≡

n∑

j=1

dΩn−1(Xj ;X−j). (S7)

When considering a delay τ = 1, as in our work, we can rewrite the dynamical O-information using the transfer
entropy in the following way:

dΩn(Y ;X) ≡ (1− n)T (Y ;X) +
n∑

j=1

T (Y ;X−j) (S8)

II. HIGHER-ORDER DYNAMICAL MODELS

A. Simplicial Ising model

Low-order Ising model. The Ising model is a mathematical model of ferromagnetisms in statistical physics [S8]. It
was originally defined on lattices and later extended to complex networks. We consider the general case of the model
being defined on a graph G = (V,E), with N = |V | nodes. To each node i ∈ V we associate a binary state variable
Si ∈ {±1}, corresponding to the spin state of the node, which can either be up (Si = +1) or down (Si = −1). The
global state of the system is controlled by the Hamiltonian:

H = −
∑

i

hiS
i −

∑

⟨i,j⟩
JijS

iSj (S9)

where {hi} are the local magnetic fields and {Jij} are the magnetic couplings for the neighbouring nodes {⟨i, j⟩}. A
special case of Eq. (S9) that allows for an exact analytical treatment in one and two-dimensional systems and a simple
mean-field formulation is obtained with no magnetic fields (i.e. hi = 0 ∀i ∈ V ) and a positive uniform magnetic
coupling Jij = J ∀⟨i, j⟩ ∈ G with J > 0. In this case, the Hamiltonian of the systems takes the form:

H = −J
∑

⟨i,j⟩
SiSj (S10)

The energy of the system described by Eq. (S10) is minimized when all spins are aligned. The order parameter of
these Ising models is the magnetization:

m =
1

N

∑

i

Si (S11)

This parameter takes values in the interval [−1,+1]. The system described by Eq. (S10) undergoes a second-order
phase transition between a fully disordered state (m = 0) and magnetized state (|m| = 1) at a critical value of the
temperature T .
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Extension to higher-order. The extension of the Ising model to incorporate many-body interactions is not a recent
question in statistical physics [S9–S11]. Notably, so-called plaquette interactions involving groups of 4, 8, 16, etc.
nodes appear when performing real-space renormalization on a square lattice, and higher-order terms appear when
performing other renormalization procedures [S12]. Recently, a direct extension of Eq. (S10) has been proposed to
describe an Ising model on a simplicial complex of order ℓ = 2 [S13]. This model has a Hamiltonian given by:

H = −J0
∑

⟨i,j⟩
SiSj − J1

∑

⟨i,j,k⟩
SiSjSk (S12)

where J1 and J2 are the strengths of two-body and three-body interactions, and ⟨i, j⟩ and ⟨i, j, k⟩ denote the two-
body and the three-body connections in the 2-simplicial complex, respectively. However, as was already noted in the
first analysis of the Ising model with three-body interactions, the extension provided by Eq. (S12) breaks the parity
symmetry under spin flip at all sites of the dyadic model without magnetic field [S10]. This can be easily understood
considering the energy of systems constituted by three spins S1, S2, and S3 connected in a 2-simplex. There are
two states with all spins aligned: all spins pointing up and all spins pointing down. These two configurations are
symmetric upon flipping all spins, yet their energies when computed using Eq. (S12) are different, favoring the state
with spins pointing up. To preserve the symmetry of the original low-order Ising model we propose an alternative
formulation of the extension of the Ising model to simplicial complexes of arbitrary order. For every simplex σ—of
all orders—we consider its only configuration favored in energy to be the one with all the spins aligned. This leads to
formulating a new Hamiltonian for the simplicial Ising model:

H = −J0

N∑

i=1

Si −
ℓmax∑

ℓ=1

Jℓ
∑

{σ∈K:|σ|=ℓ}

[
2
⊗

i∈σ

Si − 1

]
(S13)

where:

n⊗

i=1

Si = δ
(
S1, ..., Sn

)
=

{
1 if S1 = S2 = ... = Sn

0 otherwise
(S14)

is the Kronecker delta with an arbitrary number of binary arguments and ℓmax is the maximal order of K. For ℓmax = 1
Eq. (S13) reduces to the low-order model with uniform magnetic field J0 and pairwise coupling J1. Upon rescaling
the couplings by the corresponding generalized degrees, we obtain the Hamiltonian used in our work.

Montecarlo dynamics. We consider the dynamics of this system to be the Markov chain of Monte Carlo moves
performed with Metropolis-Hastings acceptance-rejection rule [S14] at temperature T . Monte Carlo dynamics are
not defined to be dynamical models but rather numerical methods for solving statistical physics problems. However,
the Metropolis-Hastings acceptance-rejection rule defines Markovian transitions between configurations of the model
which we consider—to our scope—to be the dynamic of the system. We start from a random configuration in which
each spin has equal probability of being in one of the two states. At each time step t we randomly select a set of
independent spins (i.e. sites in the simplicial complex K that are not first-neighbors). For each selected spin we
propose a flipping move. In the case considered in the main text—simplicial complex with ℓmax = 2 and no magnetic
field, J0 = 0—the energy variation given by the flipping of spin i is given by:

∆Ei(t) = 2
J1
⟨k1⟩

∑

j∈∂i

[
2δ

(
Si (t) , Sj (t)

)
− 1

]
+ 2

J2
⟨k2⟩

∑

(j,k)∈∇i

[
2δ

(
Si (t) , Sj (t) , Sk (t)

)
− 1

]
δ
(
Sj(t), Sk(t)

)
(S15)

where ∂i is the set of nodes in K connected to node i by an edge and ∇i is the set of pairs of nodes in K forming a
2-simplex with node i. The acceptance or rejection of the proposed move is based on the Metropolis-Hastings rule,
with the acceptance probability given by:

P
(
Si(t) → −Si(t)

)
=

{
exp

[
−∆Ei(t)

T

]
if ∆Ei(t) > 0

1 otherwise
(S16)

In other words, if we select a new state which has an energy lower than or equal to the present one, we should always
accept the transition to that state.
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B. Simplicial contagion model

The simplicial contagion model [S15] is a dynamical model defined to describe social contagion processes such as
opinion formation or the adoption of novelties, where complex mechanisms of influence and reinforcement are at work.
The model is defined on a simplicial complex K with N nodes. In this models, the standard susceptible-infected-
susceptible (SIS) compartmental model for contagion processes [S16] is extended to account for group interactions.
Following the SIS framework [S17], to each node of a simplicial complex K we associate a binary random variable
xi(t) ∈ {0, 1} such that at each time step we divide the population of individuals into two classes of susceptible (S)
and infectious (I) nodes, corresponding respectively to the values 0 and 1 of the state variables xi(t). At the initial
time step a finite fraction of infected agents ρ0 is placed in the population. At each time step, each susceptible agent
(xi(t) = 0) becomes infected with a probability βℓ if it belongs to a ℓ-simplex where all the other ℓ nodes are infected.
The infected agents recover independently with probability µ. The order parameter of this model is the density of
infected agents at time t, given by:

ρ(t) =
1

N

∑

i

xi(t) (S17)

Rescaled infectivity rates. In the original paper [S15], the author provide an analytical characterization of the
mean-field description of this model on simplicial complexes with ℓmax = 2. Given the set of infection probabilities
{βℓ} and the recovery rate µ, assuming homogeneous mixing and the independence between the states of different
nodes, the mean-field expression for the temporal evolution of the density of infected nodes ρ(t) is:

ρ̇(t) = −µρ(t) +

ℓmax∑

ℓ=1

βℓ⟨kℓ⟩ρℓ(t)[1− ρ(t)] (S18)

This expression can be simplified and treated analytically by rescaling time by a factor µ and introducing the rescaled
infectivity rates {λℓ = µβℓ/⟨kℓ⟩}. These rescaled infectvity rates are the control parameters we consider in our work.

III. NUMERICAL VALUES OF THE TOTAL DYNAMICAL O-INFO

In the main text we focus on the statistical distance between the distributions of the total dynamical O-info of 2-
simplices and 3-cliques. In Fig. S1a,b we show in the numerical values of dΩtot.

3 in the parameter space. For additional
reference we also show in Fig. S1c,d the numerical values of the order parameter of the two models (see Eq. (S11) and
Eq. (S17)). In the Ising model (Fig. S1a,c), we see that in the phase in which the system is not magnetized the all
groups of three nodes (2-simplices, 3-cliques and random triplets) behave synergistically, with the 2-simplices showing
more negative values of dΩtot.

3 . As the system magnetizes—this is particularly evident above the threshold of the
pairwise model—information is duplicated across units of the system and thus the groups of nodes share redundant
information, dΩtot.

3 ≥ 0. In the simplicial contagion model (Fig. S1b,d), we see that overall the groups of three
nodes in the system behave synergistically with the 2-simplices always displaying more negative values of dΩtot.

3 with
respect to the other groups of three nodes. The reason for which in the simplicial contagion model groups don’t
behave redundantly—as instead happens in the Ising model—when the order parameter is large (i.e. in the endemic
phase of the contagion model) is due to the fact that infected nodes recover independently one from the other and
independently from the global state of the system. For this reason, even in the endemic phase, the state of nodes is
not frozen as happens in the magnetized phase of the Ising model and thus the synergistic behavior dominates over
the redundant contribution and the dΩtot.

3 remains negative.

We can explicitely see the non-linearity of the relation between higher-order behaviors and higher-order
mechanisms—mentioned in the main text when looking at the dependency of the detection accuracy on the strength
of the parameters controlling the group interactions—in Fig. S2. In the figure we show the dependence of the total
dynamical O-information of 2-simplices and the strenght of the parameters controlling the group interactions (J2 and
λ2 respectively). The jump we see in the Ising model for J1 = 0.67 is due to the transition to the magnetized phase
that results in a redundancy-dominated interdependency between the units of 2-simplices.
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FIG. S1. (a)-(b) Numerical values of the dΩtot.
3 . (c)-(d) Order parameters (magnetization and density of infected agents).

(a) Ising model. Results are obtained on a random simplicial complex with N = 200 nodes and average degrees ⟨k1⟩ = 20,
⟨k2⟩ = 6, running the Montecarlo dynamics for 3 × 104 time steps with J0 = 0 at temperature T = 1. The dashed line is the
critical coupling strength of the pairwise model Jcr.

1 = 1 with no magnetic field. (b) Simplicial contagion model. Results are
obtained on a random simplicial complex with N = 200 nodes and average degrees ⟨k1⟩ = 20, ⟨k2⟩ = 6, running the contagion
dynamic for 104 time steps with µ = 0.8 and ρ0 = 0.3. The two dashed lines are respectively the epidemic threshold of the
pairwise SIS model λcr.

1 = 1 and the critical value of the rescaled 2-simplices infectivity rate above which the system shows the
discontinuous phase transition and bistability λcr.
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parameters controlling the group interactions (J2 and λ2 respectively). (a) Ising model. (b) Simplicial contagion model.
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FIG. S3. Statistical distance between the distributions of low (sum of transfer entropies) and higher-order
(total dynamical O-information) observables of behavior of 3-cliques and random triplets. (a) Ising model.
(b) Simplicial contagion model.

IV. DIFFERENCES BETWEEN THE BEHAVIOR OF 3-CLIQUES AND RANDOM TRIPLETS

In the main text we focus mainly on the difference measured by the information-theoretical metrics for behavior
between 2-simplices and 3-cliques. In Fig. S3 we show the statistical distance between the distributions of low and
higher-order observables of behavior between 3-cliques and random triplets (i.e. groups of three nodes not connected
by a 2-simplex or a 3-clique). We see that overall the sum of transfer entropies provide a better discrimination between
2-cliques and random triplets with respect to total dynamical information. This is a conforting result for two reasons:
(i) low order observables provide some discrimination between the interactions in the system and random group of
nodes and (ii) as observed in the main text from the higher-order point of view 3-cliques and random triplets show
similar behaviors. In the Ising model (panel a) we see that the statistical distance for the low order observables is
larger in the vicininty of the critical point of the pairwise system. This echoes know results about the inverse Ising
problem on graphs allowing for solutions based on mean-field inverse correlations near the critical point [S18]. In the
simplicial contagion model (panel b) the statistical distance between the sum of transfer entropies in 3-cliques and
random triplets is large in the majority of the space of the parameters. There are two regions in which the statistical
distance is slightly smaller: for small values of both λ1 and λ2 (bottom left corner) and for large values of both the
parameters. The reduced statistical distance in these two regions can be understood considering the dynamic of the
system. When λ1 and λ2 are small the number of infected agents in the system is small or null, thus the state of
nodes does not change much in time and we see no difference between interacting and disconnected nodes. Likewise,
when λ1, λ2 ≫ 1 the majority of the nodes are infected and thus also the states of non-interacting nodes are more
correlated.

V. RANDOM CHOICE ACCURACY IN THE DETECTION OF HIGHER-ORDER INTERACTIONS

The random choice accuracy score in our detection method is given by the ratio between n△ and the number of
3-cliques in the skeleton of the simplicial complex under study. The nominator of this ratio is computed using the
generalized degree as:
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n△ =
N × ⟨k2⟩

3
(S19)

In the systems used for our results, the denominator in the accuracy ratio can be easily computed, as the skeleton
of a random simplicial complex is an Erdős–Rényi (ER) random graph. The number of 3-cliques in a ER random
graph with N nodes and edge probability p (and average degree ⟨k1⟩ = ⟨k⟩ = p(N − 1)) is given by:

EN,p[# of 3-cliques] =

(
N

3

)
p3 =

N(N − 2)⟨k⟩3
6(N − 1)2

(S20)

Using the parameters employed in our simulations (N = 200, ⟨k1⟩ = 20, and ⟨k2⟩ = 6), taking the ratio between
Eq. (S19) and Eq. (S20) we obtain a random choice accuracy of 0.3.
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