SIMPLICIALLY DRIVEN SIMPLE CONTAGION with M. Lucas, I. Iacopini, A. Barrat and G. Petri

Thomas Robiglio

Spreading processes can affect each other

Spreading processes can affect each other

increase increase other diseases

 IV increases the susceptibility to

Spreading processes can affect each other

Model and the second sec

insafe behaviors boost pathogen

Interacting contagion models

- Simple contagions
- Contagions symmetrically coupled

We do:

e.g. W. Cai et al., Nat. Phys. 11, 936 (2015). L. Chen, et al., New J. Phys. 19, 103041 (2017).

- $A \rightleftharpoons B$
- Social behaviors are better described by complex contagions, and interactions are often not symmetric.
 - $A \xrightarrow{\epsilon_{AB}} B \text{ and } B \xrightarrow{\epsilon_{BA}} A$

simple 0 β_{A} β_A i β_A S. A. 0 0 $\epsilon_{BA}\beta_A$ --Infected with the other process

simple 0 β_{A} β_A i β_A R. A. S. A. 0 0 $\epsilon_{BA}\beta_{A}$ --Infected with the other process

A (unsafe behavior) drives B (disease) $|\epsilon_{AB} > 1$ and $\epsilon_{BA} = 1$

Setting $\mu_A = \mu_B = \mu$ and $\lambda_x = \beta_x \langle k \rangle / \mu$ and $\lambda_x^{\triangle} = \beta_x^{\triangle} \langle k_{\triangle} \rangle / \mu$ for $x \in \{A, B\}$

 $\dot{\rho}_{A_{\text{tot}}} = \rho_{A_{\text{tot}}} \left| -1 + \lambda_A \left(1 - \rho_{A_{\text{tot}}} \right) + \lambda_A^{\triangle} \rho_{A_{\text{tot}}} (1 - \rho_{A_{\text{tot}}}) \right|$

$$\langle k \rangle / \mu$$
 and $\lambda_x^{\triangle} = \beta_x^{\triangle} \langle k_{\triangle} \rangle / \mu$ for $x \in \{A, B\}$

Setting $\mu_A = \mu_B = \mu$ and $\lambda_x = \beta_x \langle$

$$\langle k \rangle / \mu$$
 and $\lambda_x^{\triangle} = \beta_x^{\triangle} \langle k_{\triangle} \rangle / \mu$ for $x \in \{A, B\}$

Setting $\mu_A = \mu_B = \mu$ and $\lambda_x = \beta_x \in$

$$\langle k \rangle / \mu$$
 and $\lambda_x^{\triangle} = \beta_x^{\triangle} \langle k_{\triangle} \rangle / \mu$ for $x \in \{A, B\}$

$$\dot{\rho}_{A_{\text{tot}}} = \rho_{A_{\text{tot}}} \left[-1 + \lambda_A \left(1 - \rho_A \right) \right]$$
$$\overset{\beta_A}{\underset{i \to \beta_A}{\overset{i}{\longrightarrow}}}$$
$$\dot{\rho}_{B_{\text{tot}}} = \rho_{B_{\text{tot}}} \left[-1 + \lambda_B \left(1 - \rho_B \right) \right]$$

Setting $\mu_A = \mu_B = \mu$ and $\lambda_x = \beta_x \langle$

$$\langle k \rangle / \mu$$
 and $\lambda_x^{\triangle} = \beta_x^{\triangle} \langle k_{\triangle} \rangle / \mu$ for $x \in \{A, B\}$

$$\dot{\rho}_{A_{\text{tot}}} = \rho_{A_{\text{tot}}} \left[-1 + \lambda_A \left(1 - \rho_A \right) \right]$$
$$\overset{\beta_A}{\underset{i \to \beta_A}{\overset{i}{\longrightarrow}}}$$
$$\dot{\rho}_{B_{\text{tot}}} = \rho_{B_{\text{tot}}} \left[-1 + \lambda_B \left(1 - \rho_B \right) \right]$$

Setting $\mu_A = \mu_B = \mu$ and $\lambda_x = \beta_x \langle$

$$\langle k \rangle / \mu$$
 and $\lambda_x^{\triangle} = \beta_x^{\triangle} \langle k_{\triangle} \rangle / \mu$ for $x \in \{A, B\}$

Setting $\mu_A = \mu_B = \mu$ and $\lambda_x = \beta_x \langle x \rangle$

$$\langle k \rangle / \mu$$
 and $\lambda_x^{\triangle} = \beta_x^{\triangle} \langle k_{\triangle} \rangle / \mu$ for $x \in \{A, B\}$

 $[\lambda_B = 0.8, \lambda_B^{\triangle} = 0]$

 $[\lambda_B = 0.8, \lambda_B^{\triangle} = 0]$

Simple driver

Simplicial driver

 $[\lambda_B = 0.8, \lambda_R^{\triangle} = 0]$

Simple driver

 $[\lambda_B = 0.8, \lambda_R^{\triangle} = 0]$

Results **Critical driving strength**

Results **Critical driving strength**

$$\geq \epsilon^{c}_{AB}$$
: 💥

Results Full phase diagram

• Effective formalism for the driven process B

- Effective formalism for the driven process B
- Temporal properties of *B*

- Effective formalism for the driven process B
- Temporal properties of *B*
- Markov-chain approach

- Effective formalism for the driven process B
- Temporal properties of *B*
- Markov-chain approach

Food for thought

- Effective formalism for the driven process B
- Temporal properties of *B*
- Markov-chain approach

Food for thought

Need for disease models integrating behavioral components (e.g. compliance/non-compliance)

- Effective formalism for the driven process *B*
- Temporal properties of *B*
- Markov-chain approach

Food for thought

- Need for disease models integrating behavioral components (e.g. compliance/non-compliance)
- Need for a better understanding of behavioral/ social processes

Maxime Lucas

lacopo lacopini

QUESTIONS?

Thomas Robiglio - @thomrobiglio - robigliothomas@gmail.com - thomasrobiglio.github.io

Alain Barrat

Full paper:

Lucas, M., Iacopini, I., Robiglio, T., Barrat, A., & Petri, G. (2023). Simplicially driven simple contagion. Physical Review Research, 5(1), 013201.

